A Compiler for Multimodal Scenarios: Transforming LSCs
into AspectdJ

SHAHAR MAOZ, DAVID HAREL, and ASAF KLEINBORT, The Weizmann Institute of Science

We exploit the main similarity between the aspect-oriented programming paradigm and the inter-object,
scenario-based approach to specification, in order to construct a new way of executing systems based on the
latter. Specifically, we transform multimodal scenario-based specifications, given in the visual language of
live sequence charts (LSC), into what we call scenario aspects, implemented in Aspectd. Unlike synthesis ap-
proaches, which attempt to take the inter-object scenarios and construct intra-object state-based per-object
specifications or a single controller automaton, we follow the ideas behind the LSC play-out algorithm to co-
ordinate the simultaneous monitoring and direct execution of the specified scenarios. Thus, the structure of
the specification is reflected in the structure of the generated code; the high-level inter-object requirements
and their structure are not lost in the translation.

The transformation/compilation scheme is fully implemented in a UML2-compliant tool we term the S2A
compiler (for Scenarios to Aspects), which provides full code generation of reactive behavior from inter-object
multimodal scenarios. S2A supports advanced scenario-based programming features, such as multiple in-
stances and exact and symbolic parameters. We demonstrate our work with an application whose inter-
object behaviors are specified using LSCs. We discuss advantages and challenges of the compilation scheme
in the context of the more general vision of scenario-based programming.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Techniques; D.1.7
[Programming Techniques]: Visual Programming

General Terms: Design, Languages

Additional Key Words and Phrases: Aspect oriented programming, code generation, inter-object approach,
live sequence charts, scenario-based programming, scenarios, UML sequence diagrams, visual formalisms

ACM Reference Format:

Maoz, S., Harel, D., and Kleinbort, A. 2011. A compiler for multimodal scenarios: Transforming LSCs into
Aspectd. ACM Trans. Softw. Eng. Methodol. 20, 4, Article 18 (September 2011), 41 pages.

DOI = 10.1145/2000799.2000804 http://doi.acm.org/10.1145/2000799.2000804

1. INTRODUCTION

Interest in inter-object, scenario-based specifications has increased in recent years.
The underlying idea is based on the belief that these provide an intuitive and natural
way to think about and capture complex reactive behavior [Damm and Harel 2001;
Harel and Marelly 2003a]. Also, the popular concept of use cases [Jacobson 1992] has

This work is a revised and extended version of Maoz and Harel [2006] and Harel et al. [2007].

This research was supported in part by The John von Neumann Minerva Center for the Development of
Reactive Systems at the Weizmann Institute of Science and by a Grant from the G.I.F., the German-Israeli
Foundation for Scientific Research and Development. In addition, part of this research was funded by an
Advanced Research Grant from the European Research Council (ERC) under the European Community’s
7th Framework Programme (FP7/2007-2013).

Author’s address: S. Maoz; email: Shahar.maoz@weizmann.ac.il.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2011 ACM 0163-5948/2011/09-ART18 $10.00

DOI 10.1145/2000799.2000804 http://doi.acm.org/10.1145/2000799.2000804

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:2 S. Maoz et al.

an underlying inter-object flavor, and in a way, calls for formalization and instantiation
using scenarios.

An important challenge of the inter-object, scenario-based approach to software
specification is to find ways to construct executable systems based on it [Harel 2001].
Many researchers have dealt with this challenge as a synthesis problem [Alur et al.
2003; Harel and Kugler 2002; Kriiger et al. 1999; Whittle et al. 2005], where inter-
object specifications, given in variants of message sequence charts (MSC) [ITU 1996],
are translated into intra-object state-based executable specifications for each of the
participating objects or components, or into a single global controller automaton.

The play-out technique [Harel and Marelly 2003b] is a recent example of a different
approach. Instead of synthesizing intra-object state-based specifications for each of the
components or building a global controller automaton, the play-out algorithm executes
the scenarios directly, keeping track of all user and system events for all objects or
components simultaneously, and causing other events and actions to be carried out as
dictated by the specified scenarios.

Play-out is not really relevant to classical MSC or UML sequence diagrams [UML
2005], as these are expressively weak, merely specifying existential scenarios that
may occur in runs of the real system (which is specified in a more standard, intra-
object fashion). For example, they cannot specify what must occur, what may not oc-
cur, etc. Rather, play-out was developed for the multimodal language of live sequence
charts (LSC) [Damm and Harel 2001], which extends classical MSC with a distinc-
tion between mandatory-universal behavior and provisional-existential behavior. As a
specification language, LSC’s expressive power is comparable to that of various tempo-
ral logics [Kugler et al. 2005], and it has been used in the context of testing and formal
verification [Combes et al. 2008; Klose et al. 2006; Lettrari and Klose 2001]. However,
the feature of LSC most relevant to the present article is the fact that its semantics
and expressive power are rich enough to give rise to full executability. Thus, LSC can
really be viewed as a high-level visual programming language for reactive systems,
as discussed in length in Harel and Marelly [2003a]. In Harel and Maoz [2008], we
showed how UML2 sequence diagrams can be extended to encompass the multimodal
nature of LSCs, leading to executability for them too. In the context of execution,
the multimodality of LSC refers not only to the may/must mode but also to the mon-
itor/execute mode (see Section 2.2). The variant of LSC used in the current article is
based on the UML2-compliant variant presented in Harel and Maoz [2008].

The Play-Engine tool [Harel and Marelly 2003a] contains the two main imple-
mentations of play-out available, naive play-out (or simply play-out) and smart play-
out [Harel et al. 2002].! Naive play-out chooses the next method to execute based only
on the current enabled and violating events, while smart play-out uses model-checking
techniques to look ahead and compute a safe execution path, if one exists. Both im-
plementations essentially work as LSC interpreters and can drive the simulation of
an application execution, provided it implements certain custom interfaces. Hence,
they do not integrate with a standard development environment nor can they produce
a standard executable program. This limits the applicability of the play-out execu-
tion mechanism, and hence of scenario-based programming in general, in real-world
software development.

The paradigm of aspect-oriented programming (AOP) has been proposed as
a mechanism that enables the modular implementation of crosscutting concerns
[Kiczales et al. 1997]. Separation of concerns provides better comprehensibility,
reusability, traceability, and evolvability of software artifacts [Elrad et al. 2001], and

IAnother implementation termed planned play-out implements smart play-out using Al planning algo-
rithms, see [Harel and Segall 2007].

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:3

its realization is an important achievement of the software engineering community.
Most relevant to our work, however, is that the aspect-oriented paradigm and the
scenario-based approach to software specification posses an important similarity: in
both, part of the system’s behavior is specified in a way that explicitly crosses the
boundaries between objects.

One may view the current article as taking advantage of this similarity in order to
construct a new way of executing systems that are based on the inter-object, scenario-
based paradigm. More specifically, we show how to transform LSCs onto Aspectd, thus
providing a non-interpreted means for executing multimodal scenarios. Our transfor-
mation/compilation can also be viewed as full code generation from a visual formalism,
similar to that carried out by tools like Statemate [Harel and Naamad 1996; Harel
et al. 1990], Rhapsody [Harel and Gery 1997],2 and RoseRT.? This is in contrast to the
skeletal, template code generated by many other CASE tools, requiring the reactive
behavior to be coded separately. In addition, compiling LSCs into runnable code in an
accepted programming language has the advantage of making it possible to include
the scenario-based approach in an overall system development effort, among other
things, enabling the formalization of crosscutting use cases [Jacobson and Ng 2004],
and enabling links with standard tools and development environments.

In the rest of the article, we assume a hybrid approach to system modeling and
execution, where each component may have its own intra-object behavior specified
and implemented, and where scenario-based inter-object specifications are intended
to specify additional behaviors of the system. Thus, unlike the common approach to
synthesis, where scenario-based specifications are translated into state-based specifi-
cations for each participating component before they are simulated or executed, we
follow the ideas behind the play-out algorithm from Harel and Marelly [2003a] to coor-
dinate the simultaneous direct execution of the scenarios together with the execution
of the separately specified and implemented intra-object, possibly state-based, behav-
iors. Of course, a special case is one where none of the objects/components has been
given its own intra-object, state-based behavior (except for internal methods), so that
the entire interactive nature of the system is specified in an inter-object fashion.

Our process of high-level compilation takes scenario-based specifications given in
LSC and transforms them into what we shall be calling scenario aspects, implemented
as AspectdJ aspects.* A special aspect, called the coordinator, is also generated, and
is responsible for coordinating the execution of the different, possibly interdependent,
scenarios, according to the play-out operational semantics. The generated aspect code,
consisting of the scenario aspects and coordinator aspect, is then compiled/linked with
an existing or separately implemented Java program code to create a single executable
application.

The use of aspects allows us to carry the scenario-based specification over from
the model to the code, while still eventually producing a single standard executable
program. That said, an important benefit of our approach is that the structure of the
specification is reflected in the structure of the generated code. Since each generated
scenario aspect is responsible for a single inter-object scenario-based chart, which can

2Rhapsody. IBM Rational (previously I-Logix, Telelogic) Rhapsody.
http://www.telelogic.com/products/rhapsody/index.cfm.

3RoseRT. IBM Rational Rose Technical Developer (includes Rational Rose RealTime).
http://www-306.ibm.com/software/awdtools/developer/technical/.

4We chose AspectJ because it is the most popular implementation of aspects to date and it suffices for
our needs. However, our transformation scheme is general and can be adopted to compile to other AOP
languages (see Section 6). A comparative discussion of other AOP languages with regard to our compilation
scheme is beyond the scope of this article.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:4 S. Maoz et al.

be viewed as a single requirement, the high-level inter-object requirements and their
structure are not lost in the translation. This may have important benefits in the later
stages of the development cycle, during testing and maintenance. We touch upon this
facet of our work in Section 7.

A scenario-based specification model typically consists of many interdependent
scenarios. Thus, we note that our work does not require its input scenarios to be
independent. Indeed, one of the fundamental ideas in LSCs, which is reflected in the
play-out mechanisms and their implementations, is that the LSCs (or appropriate
groups of LSCs; sometimes those will be formally clustered into use cases) form an
integral whole, influencing and triggering each other in many ways. Thus, one of the
roles of our coordination aspect is indeed to resolve (some of the) possible conflicts be-
tween the various requirements, if any. Play-out is explained in detail in Section 2.2. A
discussion of the challenges in coordinating the execution of inter-dependent scenarios
appears in Section 7.1.

It is important to note that play-out is neither superior nor inferior to synthesis.
Each approach has its advantages and limitations. One of the advantages of play-out
is the fact that the structure of the scenario-based specification is reflected in the gen-
erated code and is not lost in the translation. Another advantage is the low complexity
of compilation relative to synthesis. Play-out’s major limitation relative to synthesis is
its poorer expressive power; it defines a weaker semantics, without look-ahead or with
limited look-ahead, and thus, compilation does not guarantee deadlock-free execution.
In Section 7.1 we discuss the various play-out semantics, their advantages and their
limitations.

An implementation of play-out as defined in our work requires a mechanism to sup-
port four major features. First, unification, which is the ability to recognize events
as they happen in the system and to identify them with corresponding model-level
events. Second, dynamic binding, which is the ability to dynamically link objects in
the system to lifelines representing them in the model. Third, direct execution, which
is the ability to execute system events directly. And fourth, coordination, which is the
ability to reason about the system’s global state, taking the different interdependent
requirements into consideration, in order to proactively decide on the next event to be
executed. In Section 3 we describe our compilation scheme in detail and show how it
provides these necessary features.

Our transformation scheme is fully implemented in a UML2-compliant tool we term
the S2A compiler (standing for Scenarios to Aspects, and first presented and demon-
strated in Harel et al. [2007]). S2A provides the full executable code for the generation
of reactive behaviors from inter-object multimodal scenarios. It supports advanced
scenario-based features, such as concrete and symbolic parameters, class inheritance,
interface implementation, and dynamic creation of objects. We consider S2A to be a
test bed for experiments in scenario-based programming. The code snippets through-
out the article are all examples of aspect code generated by S2A. An overview of S2A’s
implementation appears in Section 4.

Finally, our work is part of a more general and long-term effort around the play-
in/play-out approach [Harel and Marelly 2003a, 2003b] and the vision of liberating
programming presented by Harel [2008]. These aim at bridging the gap between
requirements and execution, blurring the distinction between users, designers, and
programmers, and ultimately freeing programmers from the need to write down a pro-
gram as a textual artifact, from the need to specify requirements (the what) separately
from the program (the how) and to pit one against the other, and from the need to struc-
ture behavior according to the system’s structure, providing each piece or object with
its own behavior. We consider our current work to be a step towards this far-reaching
dream.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 185
2 BBC News # Technology # Wor... E]‘ v@
I emMBraces e anline clip age

Microsoftweb program plan

Raoll-up screens 'maoving closer’

Double disc might end hi-defwar

Fig. 1. The RSS News Ticker GUIL.

1.1 Example Application: An RSS News Ticker

Throughout this article, we use a running example to illustrate the issues we dis-
cuss. The example is an RSS News Ticker, a small desktop application that reads RSS
news feeds from selected news websites and presents news headlines in a continually
running display. When the user clicks a headline, a web browser opens to show the
corresponding article. In addition, the Ticker allows the user to set the URL addresses
for the news feeds, to switch between horizontal and vertical scrolling displays, and to
control the scrolling speed. It also checks periodically for news feed updates and dis-
plays a thin red/green blinking bar to indicate the application’s state during updates.
Figure 1 displays a screenshot of the Ticker’s GUI.

The RSS News Ticker was constructed using the S2A compiler. The classes of the
application were written manually in Java, including their inner behavior. However,
the interaction between the classes was specified using the UML2-compliant variant
of the LSC language, using the modal profile [Harel and Maoz 2008], and compiled
into aspects using the S2A compiler. The application’s code, including the generated
code and its UML model, which includes the LSC specification, can all be downloaded
from the S2A Website.5

We now briefly describe the Ticker’s architecture, at a level sufficient for under-
standing the examples in the article. Part of the Ticker’s class diagram appears in
Figure 2. The central class of the application is the RSSDisplayFrame class, which uses
several other classes and contains the GUI data and its related operations. Among
these classes are three timers, the RSSFeedTickerTimer, the BlinkerTickerTimer, and
the ScrollTickerTimer. The first is used to time and trigger the reading of RSS feeds
from the user-configured websites. The second is used to control the color switch be-
tween red and green in the thin bar. Finally, the third timer is used to control the
scrolling of the headlines displayed in the frame. All three timers extend an abstract
timer class called AbstractTickerTimer.

The RSSDisplay is another class used by the RSSDisplayFrame class. It has two
subclasses, VerticalRSSDisplay and HorizontalRSSDisplay. This structure allows dy-
namic switching between two possible views, one where the headlines move from the
bottom of the frame upward, and the other where the headlines move from right to
left.

The PopupListener and RSSList classes complete the list of classes used by the
RSSDisplayFrame class. The first is responsible for the popup context menu’s GUI and
operations, and the second stores the parsed RSS items (the headlines).

582A Website. http://www.wisdom.weizmann.ac.il/~maoz/s2a/.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:6 S. Maoz et al.

newsticker
—
ker.RSSutils
% JPopupMenu }H PopupListener }
L]
1 *
L]
% Blinker 4H RSSDisplayFrame }g RSSDispla
N I \
% RSSFeedTickerTimer 4 % ScrollTickerTimer 4 % BlinkerTickerTimer 4
\/ \/
AbstractTickerTimer VerticalRSSDispla: HorizontalRSSDispla
]

Fig. 2. Part of the RSS News Ticker class diagram.

1.2 Article Organization

The article is organized as follows. We start in Section 2 with a short review of the LSC
language, the play-out operational semantics, and the key concepts of AOP relevant
to our work. In Section 3 we present the transformation/compilation scheme’s main
ideas. Section 4 gives a short overview of the scheme’s implementation in the S2A
compiler. Section 5 elaborates on our support (or lack thereof) for some of the more
advanced features of the LSC language. Section 6 describes some early applications
and extensions, and Section 7 provides analysis and a critical evaluation of various
facets of our work. Related work is discussed in Section 8. We conclude in Section 9
with a summary and directions for future work.

2. PRELIMINARIES
2.1 Live Sequence Charts

Live sequence charts (LSC) [Damm and Harel 2001; Harel and Marelly 2003a] con-
stitute a visual formalism for inter-object scenario-based specification and program-
ming, which extends the partial-order semantics of classical message sequence charts
(MSC) [ITU 1996] mainly by adding universal and existential modalities. It thus al-
lows the definition of inter-object scenarios that specify, among other things, possible,
mandatory, and forbidden behavior.

LSC was introduced in Damm and Harel [2001]. A translation of LSC into various
temporal logics appears in Kugler et al. [2005]. The language has been the subject of
research in the areas of verification and testing (see e.g., Klose et al. 2006, Lettrari
and Klose 2001), and in the areas of scenario-based execution (play-out) and synthe-
sis [Harel and Kugler 2002; Harel and Marelly 2003a]. Initial projects that use LSC
have been carried out recently in the automotive, telecommunication, and hardware
domains [Bunker et al. 2005; Combes et al. 2008]. In the following, we start off with a
very basic description of the language. We then continue to the specific variant used
in our work.

Syntactically, as in MSCs, an LSC consists of a set of lifelines, representing in-
stances of system objects, and a set of events, mainly methods and conditions. Life-
lines are drawn using vertical lines; methods and conditions use horizontal arrows
and hexagons, respectively. Every lifeline contains locations, each of which is an

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:7

Lsc: RSSFeedFlow)

timer:RSSFeedTimer frame:RSSDisplayFrame blinker:Blinker

e tick() E
€= !

.
< ! frame.isRSSFeedAdtivated() >
[Y S — - -

EupdateRSSCaptions('
—_—>

"
1 1
1 1
1 1
1 1
1 1
1
! ”ew(frame'cuqe”mddresg, thread:RSSFeedThread
1
1
1
1
1,
1

Fig. 3. The RSSFeedFlow LSC. One of the scenarios in the RSS News Ticker program. The dashed black line
represents a cut.

intersection of lifeline with an event. A method event defines two locations (one in case
of a self call). A condition event defines one or more locations. All instance references
whose attributes or methods are used in the condition expression must synchronize
on its evaluation; other instance references may synchronize too. Most importantly, in
LSC, each event has a mode, which can be hot or cold. Cold events are drawn using a
blue line while hot events use red lines.

An example LSC named RSSFeedFlow, taken from the RSS News Ticker speci-
fication, is shown in Figure 3. Its lifelines represent an RSSFeedTimer object, an
RSSDisplayFrame object, an RSSFeedThread object, and a Blinker object. It contains
many method events and one condition. Note the mode of the different events in
the LSC.

Semantically, LSCs are interpreted over infinite traces of events. Like classical
MSCs, an LSC defines a partial-order on its events. Events covering the same lifeline
are fully ordered from top to bottom but the order between events covering different
lifelines is otherwise not restricted. An important concept in the semantics of LSC is
the cut, which is a mapping from each lifeline to one of the event locations covering
it. A cut represents a state in the scenario’s progress. The partial-order on events is
naturally extended to a partial-order between cuts.

In Figure 3, a cut has been drawn using a dashed black line just before the
RSSFeedTimer stop() method and after the Blinker startBlinking() method called
by the RSSDisplayFrame. Note that the order between the stop() method and the
blinkingEnded () method (as well as other methods before it) is not defined. That is,

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:8 S. Maoz et al.

according to the partial-order defined by the LSC, stop () may occur any time between
the updateRSSCaptions () method and the start () method of the timer.

An LSC cut defines a set of enabled events; those immediately following it (i.e.,
directly below it) in the partial-order defined by the chart. All other events that appear
in the chart and are not currently enabled are considered violating events. In addition,
the mode of events is extended to cuts as follows: a cut is hot if at least one of its
enabled events is hot, and is cold otherwise.

The enabled events induced by the cut shown in Figure 3 are stop() and
blinkingEnded(). The cut is hot, since it has at least one hot enabled event; in fact,
here both enabled events are hot.

Most importantly, the mode of an event (and a cut) carries a semantic meaning over
and above the partial-order. In every run of the system, whenever cold events from a
chart occur in the trace in the order specified by the chart (and cold conditions evaluate
to true), subsequent hot events must eventually occur in the trace in the order specified
by the chart (and subsequent hot conditions must evaluate to true). Thus, hot cuts may
be viewed as unstable states, in which the LSC is not allowed to stay forever.

A trace-based semantics for LSC was defined in Harel and Maoz [2008] using alter-
nating weak word automata [Kupferman and Vardi 2001]. Each LSC gives rise to an
automaton. The language accepted by the automaton is the language defined by the
LSC: a run satisfies an LSC iff it is accepted by its automaton. The semantics of an
LSC specification, consisting of a set of (universal) LSCs, is defined as the intersection
of the trace-languages defined by the L.SCs in the set.

2.2 Play-Out

As described in Harel and Marelly [2003a, 2003b], the play-out execution mechanism
aims at directly executing an LSC specification consisting of a set of LSCs. Basically,
the execution mechanism reacts to system events that are statically referenced in one
or more of the LSCs.

2.2.1 Execution and Monitoring. In the variant of LSCs used in the present work, an
execution mode is added to methods in the language, which can be either monitor or
execute. Monitored methods are drawn using dashed lines while execute methods use
solid lines.

In the example RSSFeedFlow LSC of Figure 3, all cold methods have execution mode
monitor and all hot methods have execution mode execute.

2.2.2 LSC Lifelines. System vs. environment, concrete vs. symbolic. An LSC lifeline
has a name, a type, and two modes: systemMode, which can be either system or envi-
ronment, and symbolicMode, which can be either concrete or symbolic.

Thus, an LSC lifeline may represent system or environment objects. System objects
are the ones controlled by the play-out mechanism. Environment objects are external
to the play-out execution mechanism. They can be monitored, but play-out cannot
drive their execution (i.e., it cannot make them call a method).

In addition, LSC lifelines are either concrete or symbolic. Concrete lifelines repre-
sent concrete objects. Their binding is statically defined (in a configuration file) and is
common to all instances of the LSC to which they belong. A symbolic lifeline is labeled
with a class or an interface name; each of them may represent any object whose class
directly or indirectly inherits from this class or implements this interface. These life-
lines are dynamically bound to concrete objects participating in the scenario, during
play-out. A symbolic lifeline may bind to different objects in different instances of the
same LSC.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:9

In the example of Figure 3, all lifelines are system lifelines; the frame and the
blinker lifelines are concrete, while the timer and thread lifelines are symbolic.

2.2.3 LSC Methods. An LSC method covers two lifelines, representing its caller and
callee objects. An LSC method may have parameters of three kinds: symbolic, opaque,
and exact. In Section 3 we describe the compilation scheme while ignoring method
parameters. Support for methods with different kinds of parameters is discussed in
Section 5.1.

2.2.4 LSC Conditions. An LLSC condition holds a Boolean expression. It is specified in
our variant of LSC using a UML2 state-invariant. A condition may cover one or more
lifelines. The covered lifelines are those that represent objects that participate in the
evaluation of the expression or need to synchronize on it (note the special case where
a constant true condition is used as a synchronization construct between a number of
lifelines).

In the example of Figure 3, the (cold) condition expression is frame.isRSSFeed-
Activated(). It synchronizes on both timer and frame lifelines.

2.2.5 Events Unification and Lifeline Binding. Play-out requires a careful mechanism for
event unification and dynamic binding.

Roughly, an occurrence of a method in the system is unifiable with an LSC method
with the same signature in an LSC instance if each of its (concrete or symbolic) lifelines
is either (1) already bound to the caller (or callee) object of the method, or (2) symbolic
and still unbound but representing a class (or an interface) that the caller (or callee)
inherit from (or implements).

As part of play-out, once an LSC method in an LSC instance unifies with an executed
method, its lifelines are dynamically bound to the caller and callee of the method. Once
bound, lifeline binding remains so until the LLSC instance is closed.

When methods with parameters are considered, an additional unification condition
requires that corresponding parameters have equal values, or that the symbolic para-
meter is free (i.e., it is not yet bound or assigned a value).

2.2.6 Play-Out Algorithm. Whenever a method is invoked in the system, play-out
checks whether it is unifiable with any LLSC method in one of the LSCs and LSC in-
stances, if any. If it is unifiable and is minimal in the partial order defined by one of
the LSCs, a new instance of that LSC is created, and its cut advances from the mini-
mal cut to the locations just after the event. If it is unifiable and is enabled in an LSC
instance, play-out advances the cut of the LSC instance accordingly. If it is unifiable
and is violating in an LSC instance, play-out checks the mode of the current cut of
this LSC instance: if the cut is hot, the violation is a hot violation and an exception is
thrown, as this should never happen; if the cut is cold, the violation is a cold violation,
and the scenario instance is discarded. If it is not unifiable it is ignored.

Conditions are evaluated as soon as they are enabled in a cut; if a condition eval-
uates to true, the cut advances accordingly to the locations just after the condition; if
it evaluates to false and the current cut is cold, the LSC instance is discarded; if it
evaluates to false and the current cut is hot, an appropriate exception is thrown, as
this should never happen.

If the cut of an LSC instance reaches maximal locations on all lifelines, the instance
is discarded.

Most importantly, once all LSC cuts have been updated following an occurrence of an
event (and the evaluation of enabled conditions, if any), the play-out execution mecha-
nism chooses an event to execute from among the events that are currently enabled in
at least one of the charts, have execution mode execute, and are not violating in any

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:10 S. Maoz et al.

of the charts whose cut is hot. The choice depends on a strategy. The naive play-out
strategy (as implemented in our work) arbitrarily chooses one of these methods, that
is, an execution-enabled method that is not violating any chart, if any. If the strategy
returns a method, play-out executes it. Play-out continues iteratively, to listen and
react to system events, ad infinitum.

2.2.7 Remarks. In our settings, we identify LSC methods with Java methods. We also
consider only the synchronized semantics of LSC. That is, we assume that the caller
of the method is blocked until the method is executed. Another general assumption
made by the play-out mechanism is that it is infinitely faster than the system; that
is, any series of operations that the play-out mechanism should execute as a reaction
to an event in the system will be fully executed before another relevant system event
occurs.

Finally, a note for the reader familiar with the original version of the language,
as defined in Damm and Harel [2001] and Harel and Marelly [2003a]. The UML2-
compliant version defined in Harel and Maoz [2008] and used here is a slightly more
uniform and generalized variant of the original one. Specifically, cold monitor frag-
ments are like pre-charts. Also, since the mode and the execution mode are orthogonal,
we are able to specify cold-execution methods. This adds some flexibility that was not
possible in Harel and Marelly [2003a].

Full definitions of the play-out algorithm for LSCs, including unification, can be
found in Harel and Marelly [2003a]. Note that our definition of unification and lifeline
binding has a polymorphic flavor not included in Harel and Marelly [2003a]. A full
definition of the polymorphic binding semantics can be found in Maoz [2009b].

2.2.8 Example. In the context of play-out, the RSSFeedFlow LLSC shown in Figure 3
details and formalizes the following behavior.

RSSFeedFlow. Whenever the RSSFeedTimer ticks (its tick () method is exe-
cuted), a condition checking whether RSS feed is currently activated is eval-
uated. Ifit is activated, the timer tells the frame to update the RSS captions.
Then the frame creates a new RSSFeedThread (that will call its own start ()
method), and tells the blinker to blink. In the meantime, the timer calls its
own stop() method. Eventually, the blinker tells the frame that blinking
has ended (by calling its blinkingEnded () method), and the frame tells the
timer to start ticking again (by calling its start () method).

Figure 4 shows another LSC from the Ticker’s specification. This LSC details and
formalizes the following behavior.

Blinking. Whenever the frame tells the blinker to start blinking, the lat-
ter creates a blinkerTickerTimer and sets its interval to 500 milliseconds.
Next, the blinker sets its own blinking attribute to true and tells the
frame (which started this scenario) that blinking has started; meanwhile,
the newly created blinkerTickerTimer calls its own start method. Next,
for at most 5 times, whenever the timer ticks, it tells the blinker to switch
its color. Finally, the blinker stops the timer it has created and informs the
frame that blinking has ended.

Note that the scenario-based requirements specified by these two LSCs are not
independent. Specifically, in the RSSFeedFlow LSC, immediately after the call to
startBlinking (), blinkingEnded() is execution-enabled (regardless of whether the
stop() method of the RSSFeedTimer has been executed yet or not). Still, in the
Blinking() LSC, after the call to startBlinking(), blinkingEnded() is violating for

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:11

LSC: Blinking J

frame:RSSDisplayFrame blinker:Blinker

startBlinking() >

new blTimer:BlinkerTickerTimer

setinterval(500) <
”7

EZI setBlinking(true) 2 start()

blinkingStarted()

LOOP E

5

4
N
'

tick()

switchColor()

S m—————— -~
blirker.blinking==true >

<
N

stop()
' |setBIinking(faIse)

Fig. 4. The Blinking LSC. One of the scenarios in the RSS News Ticker program.

! blinkingEnded()
N

most of the scenario, until it is finally enabled just before the last cut. Thus, play-out
coordination is required. The play-out strategy we use guarantees blinkingEnded ()
will not be executed until it is not violating in any of the LSCs.

The above is a rather simple example for the coordination required during execu-
tion, that is, play-out. Our compilation scheme, described in Section 3, indeed supports
this kind of coordination.

2.3 Aspect Oriented Programming and AspectJ

Aspect-oriented programming (AOP) has been proposed as a mechanism that enables
the modular implementation of crosscutting concerns [Kiczales et al. 1997]. An aspect
can be thought of as a special kind of object that observes a base program and reacts
to certain actions by running extra code of its own. The most popular implementa-
tion of AOP is Aspectd® [Kiczales et al. 2001], an extension of Java. Below we briefly
describe the features of AOP, focusing on those used in our work. We use Aspectd
terminology.

Dynamic crosscutting is the weaving of new behavior into the execution of a
program. A join point is a certain well-defined point in the execution of a program,
such as a call to a method or an assignment to a member of an object. A pointcut,
defined using the keyword pointcut, is a program construct that designates a set

SEclipse Aspectd. The Aspectd project at Eclipse.org. http:/www.eclipse.org/aspect;.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:12 S. Maoz et al.

public aspect VerySimpleAspect {

//Pointcut
pointcut methodCall() : call(void MyClass.m(..));

//Advice
after () : methodCall() {
System.out.println ("A method call to m occurred.");

}

Fig. 5. A very simple aspect with a pointcut and an after advice.

of join points, plus, optionally, values from their execution context. For example, a
pointcut can capture the execution of a certain method along with its arguments and a
reference to its caller and callee, using the keywords args, this, and target. Pointcuts
can be combined using Boolean operators. Wildcard-based syntax is used in order to
construct pointcuts that capture join points sharing common characteristics.

To declare the code that should execute at a join point selected by a pointcut, Aspectd
supports advice constructs: before, after, and around. A before advice executes prior
to the join point, an after advice executes following the join point, and an around
advice surrounds the join point’s execution and allows to bypass execution, continue
the original execution, or cause execution with an altered context. An advice may have
access to the context captured by its pointcut.

Static crosscutting is the weaving of modifications to the static structure of the pro-
gram. An intertype declaration is a static crosscutting construct that enables the in-
troduction of new methods or members to a class.

Finally, an aspect is the central unit of Aspectd. It is defined by an aspect declara-
tion, similar to that of a class declaration, using the aspect keyword. An aspect typi-
cally includes pointcuts, advice, and inter-type declarations, as well as other kinds of
declarations such as members and methods permitted in class declarations. A declare
precedence keyword can be used to specify an order of execution when two or more
aspects apply to the same joinpoint. Our compilation scheme takes advantage of these
features.

A very simple example of an aspect appears in Figure 5. The figure shows an aspect
with a pointcut and an after advice. A thorough description of Aspectd syntax and
semantics, with examples, can be found in Kiczales et al. [2001].

3. THE TRANSFORMATION/COMPILATION SCHEME

We are now ready to present the compilation scheme. We will illustrate it using an-
other LSC from the Ticker’s program: the ChangeToHorizontalDisplay LSC, shown
in Figure 6, which specifies a scenario where a user action triggers the change of the
Ticker application’s display to be horizontal.

The key to the transformation/compilation scheme is the translation of each LSC
into a scenario aspect. The scenario-aspect code simulates an abstract automaton
whose states represent cuts along the LSC lifelines and whose transitions represent
enabled events. Each scenario-aspect is locally responsible for listening out for rele-
vant events and advancing its cut state accordingly. Most importantly, the compilation
scheme generates a coordinator, implemented as another, separate aspect, which ob-
serves the cut-state changes of all active scenario aspects, uses a strategy to choose a
method, and upon making a choice executes the method.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:13

LSC: ChangeToHorizontaIDisplaw

environment frame:RSSDisplayFrame scTimer:ScrollTickerTimer
:_ac_tioLIPgrfgrrle(ﬂe)_’
[PPSR - —— dommn
< egetActionCommand() == HORIZONTAL ~ _ >
N o e e e e e e e - - —

:; IchangeOrientatior;](HORIZONTAL)

_start() 5 :

Fig. 6. The ChangeToHorizontalDisplay LSC. To make the figure more readable the expression
within the condition uses pseudo code. The actual Java expression inside the cold condition is
“e.getActionCommand () .equals (frame .HORIZONTAL).”

3.1 Scenario Aspects

Each LSC is translated into a scenario aspect, which is responsible for monitoring
the events relevant to the LSC instances, following their cut changes, reporting
on violations and completions, and, as necessary, allowing the coordinator to query
their current enabled and violating events. To address these responsibilities, the
scenario-aspect code simulates an abstract automaton whose states represent cuts
along the LSC lifeline and whose transitions represent enabled events. The scenario
aspect listens out for relevant events, using pointcuts, and advances its cut state
accordingly, using advice.

3.1.1 Building the Automaton. Building the automaton representation of an LSC re-
quires a static analysis of the LSC. The analysis involves simulating a “run” over the
LSC, to capture all its possible cuts. Each cut is represented by a state. Transitions
between states correspond to enabled events. An additional transition from each cold
cut state to a designated completion state corresponds to all possible (cold) violations
at the cut. An additional transition from each hot cut state to a designated error state
corresponds to all possible (hot) violations at the cut. During the automaton’s con-
struction, the sets of execution-enabled, monitoring-enabled, cold violation, and hot
violation events at each cut are computed and stored in the state.

Note that, since the construction of the automaton does not require information
from other LSCs, the compilation of each LSC is independent of the rest of the speci-
fication. Thus, scenario aspect code generation can be carried out “locally”; the coordi-
nation between LSCs is handled by the coordinator aspect.

Note also that the distinction between monitoring and executing methods is not
represented in the structure of the automaton, but only in the information stored in
each state.

Figure 7 shows the automaton representing the LSC from Figure 6, namely
ChangeToHorizontalDisplay. Following Harel and Maoz [2008], this is an alternating
weak word automaton [Kupferman and Vardi 2001]. Note the universal quantification

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:14 S. Maoz et al.

cond== false

Fig. 7. The automaton for LSC ChangeToHorizontalDisplay. M is the set of messages in the LSC, m1
stands for actionPerformed(e), m2 stands for stop(), etc., and cond stands for e.getActionCommand()==
HORIZONTAL. Self transitions labeled X \ M have been omitted. The A symbol attached to the edges emanat-
ing from the initial state indicates universal quantification.

on the outgoing transitions of the initial state (indicated using the A symbol), which
reflects the fact that multiple copies of the automaton may be active simultaneously
(although for this specific LSC, this is never the case). For the formal construction of
the automaton see Harel and Maoz [2008].

Analogous automata representations of LSC for the use in the context of formal
verification were given by, for instance, Bontemps and Heymans [2002] and Klose and
Wittke [2001]. In Harel and Maoz [2008], we used a similar automaton construction to
define the semantics of LSC. The construction yields an alternating weak automaton,
where the partition of the states is induced by the partial-order of events specified in
the LSC.

For each LSC in the specification, following the construction of the LSC’s automaton,
code for the scenario aspect is generated. Roughly, the structure of the code includes
three main parts, as described in the following sections.

3.1.2 Pointcuts and Advice Code. Each method of the LSC is translated into a pointcut
that captures its execution, together with the context of the calling object this, the
callee object target, and its arguments args (as applicable). An after advice is associ-
ated with each pointcut. The advice calls a private method changeCutState () with the
LSC method’s context in its arguments (as follows). For example, the method stop() in
the ChangeToHorizontalDisplay of Figure 6 is translated into the pointcut and advice
shown in Figure 8.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:15

pointcut RSSDisplayFrame ScrollTickerTimer stop(RSSDisplayFrame rSSDisplayFrame,
ScrollTickerTimer scrollTickerTimer):
call (void ScrollTickerTimer.stop(..))
&& target(scrollTickerTimer) && this(rSSDisplayFrame) ;

after (RSSDisplayFrame rSSDisplayFrame, ScrollTickerTimer scrollTickerTimer) :
RSSDisplayFrame ScrollTickerTimer stop(rSSDisplayFrame,scrollTickerTimer)
{
changeCutState (LSCMethods.RSSDisplayFrame ScrollTickerTimer stop,
rSSDisplayFrame, scrollTickerTimer,null) ;

}

Fig. 8. The generated pointcut and advice corresponding to the stop() method of the ChangeTo-
HorizontalDisplay LSC shown in Figure 6.

Recall that according to LSC semantics, an LSC does not prescribe the occurrence or
nonoccurrence during a run of methods not appearing in it, including between events
that do appear explicitly in the LSC. The occurrence of such methods does not affect
the LSC. Our use of specific pointcuts, one for each method in the LSC, reflects this se-
mantics: the code of each scenario aspect is only aware of methods explicitly mentioned
in its LSC.

Note that the advice must call the general method responsible for the automaton’s
transitions, changeCutState (), since the required behavior depends on the current cut
states of the LSC’s active instances. Each method is enabled in one or more cuts and
is violating in others. Thus, we cannot localize the response and must call the general
cut-state changing method where the automaton’s transitions are encoded.

3.1.3 Cut-State Changing Code. The method changeActiveLSCCutState() is responsi-
ble for advancing the scenario-aspect cut state along the locations of each lifeline, and
for identifying cold and hot violations as necessary. It is built as a series of switch-
case statements. The method’s arguments are an active LSC copy (see Section 5.3), an
LSC method identifier, the LSC method’s callee, the LSC method’s caller, and the LSC
method’s actual parameter values.

Each case in the switch-case structure corresponds to an id of one LSC method.
Inside each such case there are several blocks of code, one for each possible instance of
this method in the chart (the same method may appear in the chart multiple times).
Each block of code consists of two parts, the first contains tests for the current cut and
possible unification, and the second contains the actions that take place if all the tests
evaluate to true.

The cut test queries the current cut of the active LSC and compares it to the differ-
ent possible cuts at which the method under consideration is enabled. The unification
test validates the method’s target and source types, checks whether the lifelines cov-
ered by the method are bound or not, and matches the method’s parameters types and
values.

Once all the tests have been carried out successfully, a series of actions occurs. This
includes changing the cut-state of the active LSC instance, and, as necessary, bind-
ing the relevant objects (caller and callee, source and target) to the relevant lifelines,
binding parameters, and evaluating conditions that became enabled after the corre-
sponding LSC method was executed, if any.

Recall that according to LSC semantics, conditions are evaluated as soon as they
are enabled. Thus, An LSC cut that includes an enabled condition is not represented
as a state of the scenario-aspect code. Instead, the generated code ensures that as
soon as the condition is enabled it will be evaluated, and the next cut state will be set
accordingly.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:16 S. Maoz et al.

protected void changeActiveLSCCutState (int LSCm, Object sourceObject,
Object targetObject,ActiveLSCAspect activelSC,ArrayList args)

{
VA
switch (LSCm)
{
case LSCMethods.env RSSDisplayFrame actionPerformed:
if (activeLSC.instancesEquals (RSSDisplayFrame INST frame,null))

{
unification=true;
if (activelLSC.isInCut(0,0,0))
{
activeLSC.setLinelInstance (
RSSDisplayFrame INST frame, targetObject);
activeLSC.setPrivateVariable (
ActionEvent arg symbolic e,args.get(0));
activeLSC.setCut (1,1,0);
if (evaluateCondition (1, activeLSC))
{
activeLSC.setCut (1,2,0);
return;

}
break;

}
/]
if (activeLSC.checkViolation())
activeLSC.completion () ;
/]
}

Fig. 9. A snippet from the generated changeActiveLSCCutState (), which is responsible for cut changes. It
shows the part of the generated code that runs after the execution of the actionPerformed(e) method.

If one of the tests evaluates to false, the cut-state does not change. Instead, the code
checks for a violation. In the case of a cold violation or a successful LSC completion,
the active copy in the context is discarded. In the case of a hot violation, an appropriate
exception is thrown.

The code snippet in Figure 9 shows part of the changeActiveLSCCutState () method.
It checks whether an execution of the method actionPerformed(e) can be unified with
the static instance of this method as specified in the LSC, and whether the method is
enabled with respect to the current active instance’s cut. If all tests are positive, the
RSSDisplayFrame lifeline and the LSC variable e of type ActionEvent bind, the active
instance’s cut-state is advanced, and the next condition in the partial order defined by
the LSC is evaluated. If one of the tests fails, it may lead to a violation, as indicated in
the two last lines of the snippet.

3.1.4 Cut-Information Exposing Code. As explained earlier, one of the responsibilities of
the scenario aspect is to expose cut-state information so that the coordinator can query
the current enabled and violating events of the LSC instances. The generated method
getActivelSCCutState () handles this responsibility; it gets an active LSC instance as
a parameter, and returns the required information.

The method assigns instances of LSC methods, including context, among four
method sets: execution-enabled, monitoring-enabled, cold violations, and hot viola-
tions. The sets are defined based on the current cut of the LSC instance received as a
parameter.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:17

protected void getActiveLSCCutState (LSCMethodSet ME,LSCMethodSet EE,
LSCMethodSet CV,LSCMethodSet HV,ActiveLSCAspect activeLSC)
{
RSSDisplayFrame frame = (RSSDisplayFrame)activeLSC.
getLineInstance (RSSDisplayFrame INST frame);
ScrollTickerTimer scrollTickerTimer = (ScrollTickerTimer)activeLSC.
getLineInstance (ScrollTickerTimer INST scrollTickerTimer);
Integer VAR exact or(0 = (Integer) activeLSC.
getPrivateVariable (int arg exact or0);
ActionEvent VAR symbolic e = (ActionEvent) activeLsC.
getPrivateVariable (ActionEvent arg symbolic e);
VA
ArrayList<Object> args37 = getArgsList (VAR symbolic e);
LSCMethod LSCm37 = new LSCMethod (null, frame,
LSCMethods.env_RSSDisplayFrame actionPerformed,
args37);// actionPerformed() Monitored
LSCMethod LSCm38 = new LSCMethod (frame, scrollTickerTimer,
LSCMethods.RSSDisplayFrame ScrollTickerTimer stop,
null);// stop() Monitored
LSCMethod LSCm39 = new LSCMethod (frame,scrollTickerTimer,
LSCMethods.RSSDisplayFrame ScrollTickerTimer start,
null);// start() Execute
ArrayList<Object> args40 = getArgsList (VAR exact or0);
LSCMethod LSCm40 = new LSCMethod (frame, frame,
LSCMethods.RSSDisplayFrame RSSDisplayFrame changeOrientation,
args40) ;// changeOrientation() Execute
/..
if (activeLSC.isInCut(0,0,0))
{
ME.add (LSCm37) ;
CV.add (LSCm38,LSCm39, LSCm40) ;
return;
}
if (activelLSC.isInCut(1,2,0))
/]

Fig. 10. A snippet from the generated getActiveLSCCutState () method.

As the coordinator is not aware of the active LSC instances, the call from the co-
ordinator to the getActiveLSCCutState () method must be done indirectly, through a
method defined in the super class aspect LSCAspect. For further details on multiple
instances see Section 5.3.

Figure 10 shows a code snippet of the getActiveLSCCutState () method, taken from
the generated ChangeToHorizontalDisplay scenario aspect.

3.2 The Coordinator

The scenario-aspect automata are responsible for listening out for system events and
advancing their cut accordingly. However, they do not drive the execution. Rather,
it is the coordinator aspect that observes all cut-state changes in LSC instances, and
is responsible for querying the scenario aspects regarding their cut states, choosing a
method for execution, and executing it.

The coordinator code is implemented as a separate generated aspect. As a trigger
for cut-state information collection, it uses a single pointcut defined as the disjunction
of all the joinpoints that appear in all the generated scenario aspects. Thus, the

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:18 S. Maoz et al.

coordinator is made aware of any possible change in any of the scenario-aspects’ cut
state; that is, of each possible advance/violation/completion of any active LSC instance.

The after advice code collects cut-state information (sets of enabled and violating
events, including dynamic context, i.e., bound objects, arguments values) from all
active scenario aspects, and, when necessary, uses a strategy to choose a method
for execution. If a method has been selected, the coordinator executes it using an
inter-type declaration inside a generated wrapper method. The use of inter-type decla-
rations for method execution is indeed necessary; to continue playing-out with correct
unification and dynamic binding, scenario-aspect pointcuts that listen out for these
methods, must correctly interpret their caller and callee objects (using the this and
target keywords). For example, in the ChangeToHorizontalDisplay LSC, the stop()
method of the scrollTickerTimer object must be called by the RSSDisdplayFrame
object.

The strategy is responsible for choosing the next method to execute, based on the
information that the coordinator has collected. In our current implementation, S2A in-
cludes a default play-out strategy that implements the basic (naive) play-out algorithm
of Harel and Marelly [2003a, 2003b], choosing a method for execution from among the
ones enabled for execution in at least one chart and not hot-violating in any chart
(see Section 2.2). An advanced user may define and integrate a new strategy, by im-
plementing the required interface (called IPlayOutStrategy) and pointing S2A to the
implementation in the compiler’s configuration file.

Figure 11 shows a code snippet taken from the generated coordinator aspect of the
RSS News Ticker application. Note that the coordinator aspect is declared with top
precedence. This means that its after advice will be executed only after all advices in
all the scenario aspects have been executed. We thus take advantage of the precedence
feature of Aspectd. This is necessary in order to ensure that all LSCs update their cut
state before the coordinator queries it.

3.3 Conclusion

To conclude the presentation of the transformation/compilation scheme, recall the four
major features required to support the play-out mechanism as defined in our work (and
as mentioned earlier in Section 1): unification, dynamic binding, direct execution, and
coordination. In the following, we show how each of these features is handled in our
scheme.

Unification, which is the ability to recognize events as they happen in the sys-
tem and to identify them with corresponding model-level events, is addressed by our
scheme using the scenario-aspect pointcuts (see Section 3.1.2).

Dynamic binding, which is the ability to dynamically link objects in the system to
lifelines representing them in the model, is addressed by our scheme using the this
and target keywords, which provide access to the caller and callee objects of the meth-
ods captured by the pointcuts, and using corresponding scenario-aspects variables,
representing lifelines and keeping the references to the bound objects throughout the
lifetime of each scenario instance (see Section 3.1.2).

Direct execution, which is the ability to execute system events directly, is imple-
mented using intertype declarations inside generated wrapper methods in the coordi-
nator aspect (see Section 3.2).

Finally, coordination, which is the ability to reason about the system’s global state,
taking the different interdependent requirements into consideration, in order to proac-
tively decide on the next event to be executed, is supported through the scenario-aspect
cut-state changing and information exposing code (see Sections 3.1.3 and 3.1.4), and
the coordinator aspect’s use of a strategy (see Section 3.2).

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:19

public aspect LSCCoordinatorAspect
{
declare precedence: LSCCoordinatorAspect, *;
ICoordinatorStrategy strategy = new CoordinatorStrategyNaiveImpl () ;
/..
public void RSSDisplayFrame.Wrapperstop (ScrollTickerTimer scrollTickerTimer) {
scrollTickerTimer.stop () ;
}
//..
public void RSSDisplayFrame.WrapperchangeOrientation (
RSSDisplayFrame rSSDisplayFrame,int exact_ or0) {
rSSDisplayFrame.changeOrientation (exact or0);
}
/]
pointcut LSCMessage() :
call (void ScrollTickerTimer.start(..)
|| call(void ScrollTickerTimer.stop(..))

/.

after (): LSCMessage () {
LSCMethodSet monitoringEnabled = new LSCMethodSet();
/]

LSCAspectFrameInit.aspectOf () .getCutState (monitoringEnabled,
executingEnabled, coldViolation, hotViolation);

/]
LSCAspectChangeToHorizontalOrientation.aspectOf ().

getCutState (monitoringEnabled, executingEnabled,

coldviolation, hotViolation);
/..
LSCMethod LSCm = strategy.chooseMethod (monitoringEnabled,
executingEnabled, coldViolation, hotViolation);
if (LSCm != null) {
switch (LSCm.messagelD) {
//...
case LSCMethods.RSSDisplayFrame ScrollTickerTimer stop:
((RSSDisplayFrame)LSCm.sourcelnstance) .Wrapperstop (
(ScrollTickerTimer)LSCm.targetInstance);
break;
case LSCMethods.RSSDisplayFrame RSSDisplayFrame changeOrientation:
((RSSDisplayFrame)LSCm.sourcelnstance) .WrapperchangeOrientation (
(RSSDisplayFrame) LSCm.targetInstance, (Integer)LSCm.args.get (0));
break;
// ...

Fig. 11. A snippet from the generated coordinator aspect.

4. THE S2A COMPILER: IMPLEMENTATION OVERVIEW

We briefly review the general architecture and implementation of the S2A compiler.
The input for the compiler is a valid UML2 model extended with the modal profile
defined in Harel and Maoz [2008]. S2A reads the UML model in its standard XMI
representation [UML 2005], and parses it to an in-memory data structure using the
open source UML2 Eclipse APL.” Thus, S2A does not depend on the specific tool that
created the model; any UML2-compliant editor can be used to create the specification.

Figure 12 shows a screenshot of the IBM Rational Software Architect (RSA) IDE,3
which allows editing of UML models with user defined profiles. The resulting UML
model can then be exported to the standard XMI format.

S2A’s output is a set of generated AspectJ aspects; one scenario aspect for each
LSC in the specification, and a single coordinator aspect. After analysis and code
generation, the Aspectd compiler is used to weave the generated aspect code into

"Eclipse UML2. http://www.eclipse.org/modeling/mdt/?project=uml2.
8IBM RSA. IBM Rational Software Architect. http://www306.ibm.com/software/awdtools/developer/technical/.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:20 S. Maoz et al.

wadaling - 255 Applcation Medet-:Callaberatian) :Nliing; Blikiag - Ratlenat Saltwaro Aschitact

e Behator Coption,
Somahcation

Ll ption Corbead
Fracaiars:

[SEr .
. Dmshraction B

¥

s
T kv 1

Taks| Comacs Sochruta
I T TS Al s o oo ko | ek by
[Diekirg,

Fig. 12. A snapshot from the IBM RSA development environment, which allows the editing of a UML model
with user defined profiles and thus makes it possible to create UML2-compliant LSC specifications. An LSC
from the RSS News Ticker specification is shown in the main window.

existing application classes that were either coded manually or generated by some
other tool.

To keep the generated code as compact and as readable as possible, the generated
scenario aspects extend predefined aspects and classes residing in the S2A runtime
library. The application’s classes and the generated aspects must be compiled together
with this library. This allows encoding the common generic behavior of an abstract
scenario aspect in the superclass LSCAspect (which resides in the runtime library), and
generating only the relevant behavior induced by the specific LSCs. See Section 7.2 for
a discussion on the readability and usability of the generated code. The runtime library
contains also the IPlayOutStrategy interface, its default naive implementation, and
some helper classes.

5. ADVANCED FEATURES

We now discuss some of the more advanced features of our version of LSCs, with
their realization in the compilation scheme and their implementation in the S2A
compiler. These include handling methods with different kinds of parameters, support
for symbolic lifelines, multiple scenario instances, conditions, and hidden events. We
use code snippets and example scenarios taken from the RSS News Ticker application
to demonstrate these features.

5.1 Methods with Parameters

Our version of play-out, as realized in the compilation scheme, supports three kinds of
method parameters: symbolic, opaque, and exact. We explain and demonstrate each of
these below.

5.1.1 Symbolic Parameters. A symbolic parameter is a method parameter that is not
given a value in the LSC, but only a name and a type. At runtime, when a method of the
same signature occurs, the symbolic parameter binds to the actual value with which

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:21

LSC: MaybeShowPopup)

environment listener:PopupListener

' 1
. mouseReleased(e) >i
1

k-
, . !, ~
e. isPopupTrigger() DA

~S__2272 K

; I showPopup()

Fig. 13. The MaybeShowPopup LSC.

the method was executed in the program. Once bound to a value, it remains bound
for the remainder of the LSC, for instance, when it appears as a parameter in another
method parameter or within a boolean expression in a condition or a loop/alternative
fragment guard. The use of methods with symbolic parameters enables the specifica-
tion of succinct and generic scenarios [Marelly et al. 2002]. The exact unification and
binding rules can be found in Harel and Marelly [2003a].

The compilation scheme supports the use of methods with symbolic parameters.
To capture the dynamic context of a method’s parameter we use the Aspectd keyword
args. After doing so, the parameters values are stored in a list, which is part of the data
sent to the changeActiveLSCCutState () method. The parameter values are considered
in the unification test. If the cut tests and the unification tests are successful, these
values bind to the corresponding statically defined fields of the appropriate ActiveLSC
instance (see Section 5.3).

Consider, for example, the MaybeShowPopup LSC shown in Figure 13. The LSC spec-
ifies a scenario that is triggered when a user releases a mouse button over the appli-
cation’s frame. If the button is the right-hand one, then the popup menu is displayed.
The method mouseReleased(e) contains a symbolic parameter e of type MouseEvent.
The type of the parameter is not shown in the visual syntax of the diagram, but is part
of the UML2 model behind it. When the scenario is triggered by the execution of a
unifiable method, the LSC variable e binds to the actual value with which the method
mouseReleased(e) was executed. In the condition that follows, e is already bound and
can be used in the evaluation of the Boolean expression.

The code snippet in Figure 14 illustrates how S2A handles symbolic parameters.
The parameter context is captured in the pointcut using the Aspectd keyword args.
Later, in the changeActiveLSCCutState () method, the parameter binds to the active
LSC field representing the corresponding LSC variable. The code also shows how the
already bound variable can be (re)used in the remainder of the scenario. In this exam-
ple, it is being used within the condition that follows (see the evaluateConditions ()
method).

5.1.2 Opaque Parameters. Another kind of parameter supported by the compilation
scheme is the OpaqueExpression, which appears in the UML standard. When a
method’s parameter is defined as opaque, S2A copies the body of the expression to
the appropriate place in the generated code without making any attempt to parse or
to evaluate it. This allows the use of any Java expression as a method’s parameter;
reference to static constants, enumeration types, lifeline references or any other

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:22 S. Maoz et al.

public aspect LSCAspectMaybeShowPopup extends LSCAspect
{
//
pointcut env_PopupListener mouseReleased(PopuplListener popupListener,
MouseEvent symbolic e):
execution (void Popuplistener.mouseReleased(..))
&& target (popuplListener) && args(symbolic e);

after (PopupListener popuplListener,MouseEvent symbolic e):
env_PopupListener mouseReleased (popupListener, symbolic_e)
{
ArrayList<Object> args = getArgsList (symbolic e);
changeCutState (LSCMethods.env_PopupListener mouseReleased,
null, popuplListener, args);
}
!/
protected void changeActiveLSCCutState (int LSCm, Object sourceObject,
Object targetObject,ActiveLSCAspect activeLSC,ArrayList args)
{
VA
switch (LSCm)
{
//
case LSCMethods.env PopupListener mouseReleased:
if (activeLSC.instancesEquals (PopupListener INST popupListener,
null))
{
unification=true;
if (activeLSC.isInCut (0,0))
{
activeLSC.setLinelInstance (
PopupListener INST_ popupListener,targetObject);
activeLSC.setPrivateVariable (
MouseEvent arg symbolic_e,args.get (0));
activeLSC.setCut(1,1);
if (evaluateCondition (2, activeLSC))
{
activeLSC.setCut (1,2);
//
//
private boolean evaluateCondition (int conditionNumber,
ActiveLSCAspect activeLSC)
{

PopupLlistener popupListener = (Popuplistener)
activeLSC.getLinelInstance (PopupListener INST popupListener);
MouseEvent e = (MouseEvent)

activelLSC.getPrivateVariable (MouseEvent arg symbolic_e);
switch (conditionNumber)
{
case 2:
return e.isPopupTriggered() ;

}
return false;

Fig. 14. A snippet from the MaybeShowPopup scenario aspect code.

methods. The opaque expression is parsed only when the Java compiler and the As-
pectd compiler compile the generated aspects. The content of any Boolean expression,
inside conditions and guards, is also treated as an opaque expression (see Section 5.4
on conditions).

5.1.3 Exact Parameters. In addition to symbolic and opaque parameters, S2A sup-
ports exact parameters, which are constant values entered at design time. The call

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:23

LSC: AbstractTickerTimerBehavior) LSC: TickAndMove J

environment timer:AbstractTickerTimer scTimer:ScrollTickerTimer display:RSDisplay
' 1 ' 1
' 1 ' 1
. actionPerformed(e)X! - !
i 5 ko ;
1 :< -1 1
1 ' 1
Fmmm—b === ~ | :
’\ timer.equals(e.getSource()) > !
N A move() A,:
1
1
1

Fig. 15. The AbstractTickerTimerBehavior and the TickAndMove LSCs.

to setInterval (500) in the Blinking LLSC shown in Figure 4 is an example of an LSC
method with a constant parameter.

Note that exact parameters are not opaque. Their type must be specified, and their
value is taken into consideration in unification tests.

5.2 Symbolic Lifelines

Symbolic lifelines and their play-out were defined in Marelly et al. [2002] and were
originally implemented in the Play-Engine [Harel and Marelly 2003a]. The use of
symbolic lifelines, that is, lifelines that represent sets of objects rather than specific
objects, makes the language more expressive and succinct.

In the present work, we extended this feature of the language to support class inher-
itance (and interface implementation) in Java. That is, given an LSC with a symbolic
lifeline [labeled with the class C, the set of objects that may bind to / contains not only
objects of type C but also objects of any subtype of C.

To support symbolic lifelines with inheritance, S2A relies on Java and Aspectd dy-
namic binding mechanisms. Notice that by using these mechanisms we get “for free”
also the ability to specify scenarios with lifelines that represent abstract classes and
interfaces.

Consider for example the LSC AbstractTickerTimerBehavior of Figure 15 (left).
This LSC has a symbolic lifeline representing an abstract class: the class
AbstractTickerTimer. It thus specifies a behavior common to all objects deriving from
a class inherited directly or indirectly from AbstractTickerTimer. During execution
of the RSS Ticker application, there are three concrete objects that may be bound to
this lifeline, that is, the three timers used in the application (see the class diagram in
Figure 2). In fact, there can even be two or more instances of this LSC active simulta-
neously, each with a different timer object bound to the AbstractTickerTimer symbolic
lifeline (see Section 5.3).

Note the polymorphic interpretation of the symbolic lifeline in its binding to
different concrete objects. Just like concrete lifelines, events attached to symbolic
lifelines are unified with executed methods and affect play-out. For example, consider
the (simple) LSC TickAndMove that appears in Figure 15 (right), which specifies
a scenario that drives the scrolling of the RSS captions. Roughly, it states that
whenever a ScrollTickerTimer ticks, it calls the move() method of the RSSDisplay
object. As part of play-out support for symbolic lifelines, the two tick() methods,

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:24 S. Maoz et al.

in the AbstractTickerTimerBehavior and the TickAndMove LSCs, may be unified
at runtime, if the instance lifeline representing the AbstractTickerTimer in the
AbstractTickerTimerBehavior LSC is bound at runtime to an instance of the
ScrollTickerTimer, despite their appearance in the specification at different levels of
the class hierarchy.

As another example, recall the Blinking LSC of Figure 4, which has a lifeline
of type BlinkerTickerTimer. At runtime, the tick() methods in the Blinking and
AbstractTickerTimerBehavior LSCs may unify, in an instance of the latter, whose
AbstractTickerTimer lifeline binds to a BlinkerTickerTimer. In this case the coordi-
nator makes sure tick() will not be executed unless it is enabled in the instances of
both LSCs.

Allowing the specification of such generic scenarios, which may be instantiated with
different types of objects, makes the LSC specification more expressive and succinct,
and thus renders play-out more powerful. It also seems to be a natural feature in the
context of Java and for engineers who are familiar with object-oriented design.

Some delicate semantic issues and technical implementation details arise in the
context of this feature of the language and its implementation in S2A. They include,
for example, static vs. dynamic resolving of references, as well as issues related to the
semantics of call and execute pointcuts in Aspectd [Barzilay et al. 2004]. The details
are outside the scope of this article. We hope to cover them in a future paper dedicated
to this topic.

5.3 Multiple Scenario Instances

Recall that, according to play-out semantics, a given LSC may have multiple instances
active simultaneously, each in a different cut and/or with different lifeline bindings.

As already mentioned, the LSC AbstractTickerTimerBehavior of Figure 15
(left) specifies a generic behavior in which the AbstractTickerTimer class partic-
ipates. During the RSS News Ticker application run, there may be a point in
time where several instances of this LSC are active simultaneously. For example,
when two different timers, a ScrollTickerTimer and a BlinkerTimer, are triggered
by the environment, two different instances of the AbstractTickerTimerBehavior
LSC are activated, each with a different concrete object bound to the
AbstractTickerTimer lifeline. The LSC variable e is also bound to a different value
in each instance.

To support the multiple-instances semantics, the scenario aspect manages an ar-
ray of active LSCs, representing instances of this LSC. The scenario aspect itself is
used as a static object containing all the operations and data that are common to
all instances of this LSC. These include the operations getActiveLSCCutState() and
changeActiveLSCCutState (), and static data such as the number of lifelines, the list
of hot cuts, etc. Moreover, the generated pointcuts are also part of the scenario aspect,
since the events that need to be monitored and checked for possible unification are
common to all the instances of a given LSC.

Figure 16 displays a snippet of the scenario aspect, which was generated from the
AbstractTickerTimerBehavior LSC. The snippet contains an example of the static
members and the operations belonging to a scenario aspect.

Bookkeeping of LSC instances is done using an array of activeLSC objects, each
of which represents an active LSC instance and holds the data of this LLSC instance,
that is, lifeline binding references, the current cut of this instance, parameter values
etc. Roughly, whenever the scenario aspect method changeCutState() is called, a
test of whether the event that triggered the call is minimal takes place. If the test
is positive, a new activeLSC object is created and is added to the active instances

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:25

public aspect LSCAspectAbstractTickerBehavior extends LSCAspect
{
//Constants for instances, locations, variables
static final int AbstractTickerTimer INST abstractTicker = 0;
static final int ActionEvent arg symbolic e = 0;
MSDAspectAbstractTickerBehavior ()
{
addMinimalEvent (MSDMethods.env_AbstractTickerTimer_ actionPerformed) ;
setHotCut (1, 2);
setLastCut (1, 3);
numberOfLifelines = 2;
numberOfInstances = 1;
numberOfVariables

Il
—

}

//Pointcuts and advice

pointcut AbstractTickerTimer AbstractTickerTimer tick(
AbstractTickerTimer abstractTickerTimer) :

/]

//Automaton logic

protected void changeActiveLSCCutState //..

/]

protected void getActiveLSCCutState //..

/).

Fig. 16. A snippet from the AbstractTickerTimerBehavior generated scenario aspect. Note that the gener-
ated scenario aspect is a subclass of LSCAspect. Note also the constants and the settings of various ‘static’
(i.e., common to all instances) properties of this scenario inside the constructor.

VA
protected void changeCutState (int LSCMethodID, Object sourceObject,
Object targetObject,ArraylList args)
{
completedActivelLSCs.clear();
if (minimalEvents.contains (LSCMethodID))

{
ActiveLSCAspect newCopy = new ActiveLSCAspect (numberOfLifelines,
numberOfInstances, numberOfVariables, idCounter++, this) ;
activeLSCArray.add (newCopy) ;

}
for (ActiveLSCAspect curCopy: activeLSCArray)

{
doBindings (curCopy) ;
changeActiveLSCCutState (LSCMethodID, sourceObject, targetObject,
curCopy, args) ;
}
for (ActiveLSCAspect deadCopy:completedActiveLSCs)
activeLSCArray.remove (deadCopy) ;

}
/]

Fig. 17. A snippet from the LSCAspect code, the scenario-aspects super class. The snippet displays the
changeCutState () method and how it handles the LSC’s multiple active instances.

bookkeeping array. Each call to the changeCutState() method, triggers one call to
the changeActiveLSCCutState () method, for each active LSC instance in the array. A
violation (cold or hot) or a completion of an active LLSC instance causes the removal of
the corresponding activeLSC from the array.

Figure 17 contains a snippet from the code of LSCAspect, which serves as
a super class for all the generated scenario aspects. The snippet displays the
changeCutState () method and shows how it handles the LSC’s multiple active in-
stances. The getCutState () method has similar structure.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:26 S. Maoz et al.

5.4 Conditions and Hidden Events

LSC conditions are formally specified in our work using UML StateInvariants with
Boolean expression values. As explained above, we consider expressions inside condi-
tions to be opaque. Thus, S2A does not parse or otherwise try to evaluate them, but,
rather, only copies them into an appropriate place in the generated code.

Since S2A neither parses nor evaluates opaque expressions, they must be used
carefully. For example, in general, S2A assumes the programmer uses only side-effect-
free expressions inside conditions (and opaque parameters). It also assumes that the
expression code will indeed compile. Our approach to handling expressions is thus
similar to the way tools such as Rhapsody and Rational Rose Real-Time handle guards
and code snippets added on state entrance and exit. In Section 7.1 we briefly evaluate
the tradeoff involved in this design decision.

Boolean expressions appear not only within StateInvariants but also as guards
in various combined interaction fragments (e.g., an LSC switch-case construct). In
addition, the entrance and exit of any fragment are considered to be synchronization
points; all lifelines participating in the fragment synchronize on enter and exit (this
kind of synchronization is called a hidden event in Harel and Marelly [2003a]).

In our work, conditions and hidden events are evaluated as soon as they are
enabled.? Thus, the code that calls for their evaluation is located in the method
changeActivelLSCCutState (). Conditions appear immediately after the cut state of an
active LSC was set to a cut where they are enabled. If a condition evaluates to true,
the cut is advanced. If it evaluates to false, a cold or hot violation occurs, based on the
current cut’s mode. Guard expressions are treated similarly, with the difference that a
false evaluation of a guard expression does not lead to a (cold or hot) violation. Instead,
false evaluation of a guard results in evaluating the next guard, or, if no such guard
exists, it results in a transition to the next cut state outside the interaction fragment
in context.

The snippet of the generated code in Figure 14 demonstrates condition evaluations
within scenario aspects. Note the evaluateCondition() method and the call for condi-
tion evaluation from within the changeActiveLSCCutState () method.

5.5 Additional Features

S2A supports additional important features of LSCs such as dynamic object creation,
and control-flow constructs like switch-case (using the UML ALT alternative interac-
tion fragment), and bounded and unbounded loops. The Blinking LLSC presented in
Figure 4 demonstrates the use of dynamic object creation and bounded loops. Note
that LSC switch-case and loop constructs are not implemented using Java switches
and loops. Rather, these are high-level control-flow constructs, which are reflected in
the structure of the LSC automaton. For example, an LLSC switch-case (a UML ALT al-
ternative interaction fragment) results in branching in the LSC automaton, choosing
between several next cut states using guards. We omit the technical details.

6. APPLICATIONS AND EXTENSIONS

A number of early case study applications created using S2A are available for down-
load from the S2A Website. In addition, the transformation scheme and its accompa-
nying S2A compiler have already been extended and used in some related research
work, now briefly discussed.

90ther possible evaluation strategies for conditions and hidden events are considered in Harel and Marelly
[2003a], together with a discussion of their advantages and disadvantages. These are outside the scope for
this article.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:27

In Lo et al. [2007] and Lo and Maoz [2008a, 2008b], data mining methods are used to
extract statistically significant modal scenario-based specifications from program exe-
cution traces. The mined scenarios are visualized using the UML2-compliant variant
of LSC. The work uses the S2A compiler to translate the mined scenarios into monitor-
ing scenario aspects, which are then compiled and used as (monitoring) scenario-based
tests over subsequent executions of the application under investigation.

Maoz et al. [2007] describe a framework for the visualization and exploration of ex-
ecution traces of reactive systems. The technique links the static and dynamic aspects
of the system, and supports synchronic and diachronic trace exploration, multiplic-
ities, and event-based and real-time-based tracing; it uses overviews, filters, details-
on-demand mechanisms, multi-scaling grids, and gradient coloring methods. The work
uses the S2A compiler to generate scenario-based traces [Maoz 2009a]. The ideas are
demonstrated using a prototype tool called the Tracer.!?

It is noteworthy that the Tracer can be used to visualize and explore general
scenario-based traces. It is not limited to programs that are executed by play-out. In
general, we believe that even when one follows a synthesis approach or just manually
implements the requirements in code, viewing the execution in terms of the scenario-
based specification defining it can be very useful, specifically for analysis, testing, and
comprehension purposes. The S2A compiler and the Tracer indeed support this kind
of view.

Atir et al. [2008] investigate the classical notion of object composition in the
framework of scenario-based specification and programming. In order to support and
take advantage of object composition, the LSC language is extended with appropriate
syntax and semantics that allow the specification and interpretation of scenario
hierarchies — trees of scenarios — based on the object composition hierarchy of the
underlying model. This work has been recently implemented as an optional extension
to the S2A compiler.

Poupko [2008] presents preliminary work investigating the use of the LSC language
in specifying web service choreography. It uses the S2A compiler to compile each par-
ticipant’s view of the choreography into a separate scenario aspect, and then distrib-
utes the generated aspects code between the implemented services. Thus the code
generated by S2A is integrated with the web service environment.

Finally, Maoz et al. [2009] present a version of the S2A compiler whose target lan-
guage is AspectC++ [Spinczyk et al. 2002].1! In this work, test cases specified visually
using LSCs are automatically translated into scenario aspects written in AspectC++,
for the purpose of test execution within an application running on Symbian OS, in-
side a Nokia smartphone. The work demonstrates the use of LSC and the compilation
scheme presented here for scenario-based testing. It also shows the applicability of
the scheme, with the required technical modifications, to aspect languages other than
Aspectd.

7. ANALYSIS AND EVALUATION

In this section we provide a critical analysis of various aspects of our work, evalu-
ate its advantages and limitations, and suggest related challenges. These include
a discussion of play-out, smart play-out, and controller synthesis; a discussion of
the readability and usability of the code; a complexity analysis and performance

10Tracer Website. http://www.wisdom.weizmann.ac.il/~maozs/tracer/.
1 AspectC++. http://www.aspectc.org.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:28 S. Maoz et al.

discussion for the compilation; a discussion on runtime performance; and suggestions
for optimizations of the generated code.

7.1 Play-Out, Smart Play-Out, and Controller Synthesis

7.1.1 The Limitations of Naive Play-Out. As discussed in Harel et al. [2002], the original
play-out process of Harel and Marelly [2003a] implemented in our present scheme,
is rather naive. Specifically, some of the possible sequences of events may eventu-
ally lead to deadlocks. That is, to states where one active scenario requires the even-
tual execution of a first method before a second one, while another scenario requires
the eventual execution of the second before the first; or, similarly, where one active
scenario requires the eventual execution of a certain method while another forbids
it. Moreover, the partial-order semantics among events in each chart and the ability
to specify scenarios in different charts without providing explicit runtime dependen-
cies are very useful in early requirement stages, but can cause underspecification and
nondeterminism when one attempts to execute them. In naive play-out, nondeter-
minism is solved ad-hoc, taking the current global state into consideration but not
considering the future effects of the different choices. Even when a deadlock-free ex-
ecution path is available, naive play-out is not guaranteed to find it. As a result,
naive play-out will lead to a safe execution only if dependent scenarios agree on the
order of shared events. One way to address this in the context of compilation (that
is, not at runtime like the smart play-out technique that we discuss next), may be
the development of a precompilation analysis that checks whether naive play-out is
safe for a given LSC specification. We believe this is possible and leave it for future
work.

7.1.2 Smart Play-Out. Smart play-out [Harel et al. 2002] addresses the limitations of
naive play-out using model-checking techniques, which, for instance, can be used to
look ahead at runtime and compute a safe execution path, if one exists. The details of
smart play-out are outside the scope of this article.

Packaging smart play-out as a play-out strategy that can be used by the coordi-
nator in our scheme involves no major technical difficulty. Changes to the compila-
tion scheme would be relatively minor; the generated scenario aspects and coordinator
would collect the global state of the LSCs, and smart play-out reasoning would be
embedded in the strategy used by the coordinator.

We note, however, that the correctness (soundness and completeness) of smart play-
out depends (among other things) on the assumption that the play-out mechanism has
full control over the execution. Since in our scheme the generated scenario aspects
are integrated with other code, whose behavior may not be fully modeled in the LSC
specification, the applicability of smart play-out to our work may be limited. Stronger
assumptions about the relationships between the LSC specification and the core code
of the application, or, alternatively, a stronger notion of smart play-out that allows
reasoning with incomplete information, may be required in order to integrate smart
play-out (or a variant thereof) into our compilation scheme in a useful and effective
way.

In addition, recall that our current compilation scheme handles expressions inside
conditions and guards as opaque (see Section 5.4). Applying smart play-out, however,
requires expressions to be parsed and evaluated by the execution mechanism for the
purpose of reasoning. While this is possible, it limits the kind of expressions one can
put in the program. This trade-off needs to be considered when applying smart play-
out (and synthesis; see below) to our work.

Another barrier to the integration of smart play-out into our compilation scheme is
its complexity. In Harel et al. [2009b] we show that a most simple variant of smart

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:29

play-out is PSPACE-hard. Nevertheless, this worst case complexity is rarely actu-
ally met; recent work done in our group presents heuristics to accelerate smart play-
out [Harel et al. 2010], which might be used in our work in the future.

7.1.3 Controller Synthesis. Section 7.1.2 notwithstanding, one should realize that
smart play-out is limited too. Specifically, in Harel et al. [2009a] we show that
smart play-out, no matter how often repeated, is strictly weaker than full synthesis
from LSCs. We thus believe that full controller synthesis from an LSC specification,
following Harel and Kugler [2002], and as more recently investigated and imple-
mented in Kugler et al. [2009] and Kugler and Segall [2009], is an alternative worth
considering.

Thus, an important direction for future work involves the integration of the compi-
lation scheme presented in this article with a strategy that is based on a synthesized
controller. This would still lead to compiling LLSCs into scenario aspects that monitor
the progress of scenario instances, and generate a coordinator aspect that collects the
global state from the scenarios and is able to inject method executions. However, the
execution strategy itself, would be separately generated from a synthesized controller.
In other words, even if a synthesized controller does become available, we would still
need a mechanism to collect the relevant information from the program as it executes.
In addition, we would still be interested in examining the execution of the resulting
program from the point of view of the different scenario-based requirements (e.g., for
model-level debugging using model-based traces [Maoz 2009a]).

In addition to the barriers mentioned above regarding smart play-out, two chal-
lenges can be seen in integrating our work with a strategy that is based on a syn-
thesized controller. First, the complexity of synthesis and the size of the controller.
Second, the significant gaps between the subset of the LSC language handled by syn-
thesis solutions to date, and the much richer subset handled by play-out (and by our
compilation scheme). We specifically have in mind multiple instances and symbolic
(polymorphic) specifications. We pose these too as directions for future work.

7.1.4 Play-Out Semantics. To sum up the discussion above on naive play-out, smart
play-out, and synthesis, one may view these three different approaches to play-out as
three different operational semantics for the same language. Naive play-out defines
one semantics. Smart play-out defines another, stronger semantics, and synthesis
defines an even stronger one.

Thus, the limitations of naive play-out discussed above do not render it useless.
The fact that in the general case naive play-out (and hence the code produced by our
compilation scheme) may result in deadlocks, does not render it incorrect. No software
development tool we are aware of that generates code from higher-level models (e.g.,
Rhapsody, RoseRT) guarantees a deadlock-free execution, and one should emphasize
that the compilation scheme and implementation presented in this article are sound
with regard to this semantics of naive play-out.

7.2 Readability and Usability of the Generated Code

The evolution and maintenance of software constructed from a mix of manually
created source code and automatically generated code is a well-known challenge.
Indeed, in many other approaches and their accompanying tools, which transform
visual formalisms into code (e.g., Statemate [Harel et al. 1990], IBM Rational RoseRT,
Rhapsody), the generated code is inseparable from the manually created code, and
thus creates difficulties in code evolution and maintenance (a problem that is partly
addressed by complicated code synchronization utilities).

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:30 S. Maoz et al.

In contrast, since S2A generates aspect code, the generated code and the rest of
the application’s source code are strictly separated into different files throughout
the development process. That is, the structure of the specification is reflected in the
structure of the generated code. Moreover, this separation allows local changes in
the program’s code; for instance, changes to the implementation of methods that are
independent of the methods appearing in the LSC specification, to be manually made
in the separate files without worrying of accidentally changing the code responsible
for the LSC execution, and without worrying that future LSC compilation would
override manually made changes. While this does not provide guarantees for seamless
maintenance, we consider it a nice advantage of our approach.

The readability of the generated code itself is another important concern for code
generation tools. To improve readability of our generated code, most of the common
functionality of all generated aspects is encapsulated in an abstract (nongenerated)
aspect, LSCAspect (residing in the S2A runtime library), and all generated aspects are
defined as its subclasses; see, for instance, line 1 of Figure 16. This helps ensure a
relatively high level of abstraction in the generated code wherever possible. As an
example, consider the violation checks and the completion operations of an active LSC
copy, appearing in the last two lines of Figure 9. We thus take advantage of aspect
inheritance in order to keep the generated code for scenario aspects as readable and
as concise as possible.

We have made an additional effort to ensure that the generated code is readable and
informative, for instance, by using clear naming conventions and avoiding redundant
code cloning within each scenario aspect. For example, the scenario aspect name is
based on the name of its source LSC (e.g., line 1 of Figure 16); lifelines and variables
are translated into constants in the scenario aspect (Figure 16, lines 4-5); lifeline and
variable bindings of an active LSC copy are abstracted into “set” and “get” methods
(Figure 14); a pointcut’s name is composed of the name of its source method in the
specification, the method’s caller, and the method’s callee (the name convention for
LSC methods identifiers is similar); cuts are represented as tuples of integers; all
operations related to cuts, such as advancing the cut, querying about it, or comparing
between cuts, are abstracted to operate on these tuples and are implemented in the
generic activeLSC class (see Figure 14).

Moreover, due to the partial-order semantics, LSC conditions and guards may have
to be evaluated in several different cuts, that is, in different transitions of the au-
tomaton. In order to keep the code compact and to avoid redundant clones of condi-
tion’s/guard’s expressions, we aggregate all the Boolean expressions appearing in the
LSC into a single place in the scenario aspect code, the evaluateConditions () method
(see Figure 14).

Finally, as another readability aid, the LSC method objects, which are constructed
inside getActiveLSCCutState() and are sent to the coordinator, are followed by a
documentation comment. The comment helps the reader identify which LSC method
is represented by each object (see Figure 10).

7.3 Complexity Analysis

We briefly discuss the worst-case complexity of the compilation scheme, which is dom-
inated by the size of the automaton constructed for each LSC.

Given an LSC with n events and % lifelines, due to the partial-order semantics, a
naive DFS-like traversal of the LSC generates an automaton of size O(k"). We use,
however, a rather simple optimization, based on identifying equal cut states that are
reachable from multiple sources and unifying them into a single state. Identical cuts
are discovered and unified as soon as they are found, thus saving multiple traversals

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:31

of e%ual subtrees. This reduces the worst case size of the constructed automaton to
O(n*) (since n > k, this approach is very effective).

Note that since the construction of the automaton does not require information from
other LSCs, the compilation of each LSC is independent of the rest of the specification.
The total complexity of a specification of m LSCs is the product of these n* quantities
for each of the LSCs. If ny and k¢ are the maximal number of events and lifelines in
all the m LSCs, the total complexity is O(mnﬁo). Generating the coordinator aspect
requires O(]) time, where [is the total number of unique events appearing in the LSCs
in the specification (the size of the alphabet).

7.3.1 Compilation Optimization. The following ideas for compilation optimization may
be considered. The first is static analysis of the specification as a whole, to identify,
for instance, unreachable cut states or opportunities for partial-order reduction. As
a simple example: the execution of methods that appear only in a single LSC can be
performed locally, whenever enabled, eliminating the need for coordination (for these
methods). This example is inspired by the work in Harel et al. [2010]. The complexity
of such global preprocessing analysis will in general be high, similar to that of smart
play-out previously mentioned, but it may result in much smaller (and efficient) gen-
erated code.

Second, and perhaps more practical, is a local analysis of each LSC, which will
not construct an automaton but will only represent the order of event occurrences on
each lifeline, leaving the next cut state of the LSC to be computed at runtime. For an
LSC with n events and % lifelines, compilation complexity would be O(nk) (instead of
the O(n*) mentioned above). Thus, this will be most effective when LSCs with many
lifelines (and “a lot” of partial-order) are considered (as in Atir et al. [2008]). There
will be a trade-off, however, between the time invested in compilation and the overhead
incurred in runtime performance, since computing the set of enabled events for a given
state, at runtime, will not be constant (as it is now) but linear in the number of lifelines
in the LSC.

We leave the details and the implementation of these possible optimizations for
future work.

7.4 Early Experience with Compilation Performance

Despite the O(mn*) upper bound on compilation complexity discussed previously, ac-
tual compilation time in most example applications we have tested to date is negligible.
Specifically, for specifications of up to 20 LSCs, each with no more than 6 lifelines, S2A
compilation takes less than a second on a very basic computer (Pentium 4, 2.8GHz,
1G RAM). This is because most real specifications do not make intensive use of ex-
plicit partial order and the number of lifelines per LSC is typically bounded by a small
constant (even if the specification as a whole involves many different objects).

Some specifications do take significant time to compile. For example, some of the
LSCs created in the process of compiling the trees of scenarios used in Atir et al. [2008]
in the context of object composition have 16 lifelines. Our experience shows that the
compilation of these specifications indeed takes much longer and generates very large
code. Thus, the optimization ideas suggested in the previous subsection appear to
be important for the successful application of our approach in general, and of S2A in
particular, to real world software engineering.

That said, due to the use of play-out, rather than smart play-out or synthesis,
compilation is indeed local; each LSC is independently analyzed and each scenario
aspect is independently generated. Thus, worst-case compilation complexity, as well
as its actual running time, grows only linearly with the number of LSCs in the
specification. Smart play-out and synthesis have greater expressive power, but require

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:32 S. Maoz et al.

a global analysis, that is exponential in the number of LSCs in the specification (see
Section 7.1).

7.5 Early Experience with Runtime Performance

The runtime performance of the generated code is a well-known concern for code gen-
eration approaches and tools. In our context, runtime performance is affected mainly
by the following parameters: the number of join points in each LSC and the extent to
which they are generic, the number of active instances of each LSC, and the imple-
mentation of the strategy.

It is important to note that optimal performance is not the main goal of our work.
Thus, for example, we chose to implement the compiler in Java, and selected Java and
Aspectd as target languages, mainly due to the popularity of these languages and the
availability of their excellent tool support. This choice was not made with the goal of
optimal performance in mind. Towards the end of Section 8.3 we discuss related work
on aspects that is geared towards optimal performance, and which may be applicable
to our work in the future.

Another design decision that was not made with the goal of optimal performance
in mind relates to code readability. Many of the readability related features discussed
in Section 7.2 may hinder performance, for instance, the elimination of LSC condition
clones.

We have experimented with a number of case study applications, including desktop
applications with real-time user experience, such as the RSS News Ticker presented
here and a Space Invaders game. The latter consists of more than 20 LSCs, some of
which may have more than 30 instances simultaneously active at runtime. We used
only a very basic 2.8GHz Pentium 4 machine with 1G RAM.

At the level of user experience we have not noticed any effect on performance, com-
pared to an implementation of the same application using manually written standard
Java. This result was expected: not all the behaviors of the applications at hand were
modeled and executed using LSCs. Most low-level behaviors, such as writing to the
screen, were implemented in Java and were abstracted away from the specification
model. The LSCs included only higher-level method calls between application objects
and conditions over parameters and observable objects properties, similar to the ones
present in the RSS News Ticker example specification.

At a more detailed level, in specific experiments, an overhead was noticed. As
expected, this increased linearly with the number of LSC instances simultaneously
active in the application.

We acknowledge that the performance analysis discussed here is partial. As
mentioned previously, optimal performance is not the main goal of our work. Thus, a
thorough performance analysis remains to be done.

7.6 Possible Optimizations for the Generated Code

We consider the following suggestions for generated code optimization.

First, as long as a minimal event of an LSC has not occurred, one need not listen to
any of the other methods mentioned in this LSC. The same is true whenever a minimal
event occurs but all active LSC instances have already closed. That is, when there is
no active LSC instance, the only events play-out needs to monitor are the minimal
ones (due to the partial-order semantics, there may be more than one minimal event).

Thus, one may consider adding a simple condition to all advice of pointcuts not
representing minimal events in that LSC. If no active LSC instance exists, the
changeCutState () method should not be called, and the advice will complete instantly.
Note that this cannot be generalized to other situations, because whenever an LSC

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:33

instance does exist, every method event captured by one of the pointcuts is potentially
enabled or violating, depending on the current cut state of the LSC instance (and its
bindings); hence, it cannot be handled without consulting the automaton.

Second, recall that whenever a method that may change the cut state of any of
the LSCs occurs, the coordinator aspect collects cut-state information (sets of enabled
and violating methods) from all LSCs, and each LSC collects this information from its
active LSC instances, if any.

Thus, one may consider an optimized version of the generated coordinator that will
statically compute, in advance, which events may change which of the LSCs cut states.
Computing such an over-approximated mapping at compile time is not difficult. Using
this approach, the coordinator would keep the results returned by each of the LSCs.
Whenever an event occurs, it would call the getCutState () method of only the LSCs
which may be affected by this event and combine the results with the cached results of
the other LSCs. Alternatively, each LSC can manage this cache on its own, and update
it only when the state of one of its active instances changes.

This may improve the generated code’s performance without affecting compilation
performance. Additional possible improvements may be achieved using advanced ap-
proaches to AOP; see the end of Section 8.3.

8. RELATED WORK

We now discuss related work on LSC play-out, synthesis, aspect modeling, aspect code
generation, and other approaches to AOP.

8.1 The Play-Engine and InterPlay

The Play-Engine [Harel and Marelly 2003a] is an experimental tool for requirements
capture and direct execution of LSCs, based on the play-in/play-out approach [Harel
and Marelly 2003b].12

By compiling LSC specifications into Aspectd code we advance the ideas behind
play-out from a tool dependent interpreter to having the potential of becoming the
central part of a standard development and execution environment.

InterPlay [Barak et al. 2006] coordinates the simulation of the Play-Engine and a
separately executed program, such as another Play-Engine, or an intra-object stat-
echart tool like Rhapsody or RoseRT, given an appropriate custom interface imple-
mentation. It relies on a user-defined bidirectional mapping between LSC events and
observable program events. In contrast, our compilation process integrates the LSC
specification into the program code, the result thus being a single executable program,
despite the use of different multiple modeling methodologies in the requirements spec-
ification and coding phase.

8.2 Synthesis and Aspects

Kriiger et al. [2005] propose a translation of conventional MSCs into Aspectd in the
context of exploring alternative service-oriented architectures. This work is related to
ours, but it suggests using a synthesis algorithm, adopted from Kriiger et al. [1999],
to project specified behaviors onto each role, ultimately providing a state machine for
each participating object. As explained earlier, play-out, and thus our compilation
scheme too, attempts to bypass the need for this kind of synthesis. More recent work
by Kriiger et al. [2006] translates MSCs into aspects and lets the weaver resolve some

12Play-in is a user-friendly high-level way of specifying behavior and automatically generating the specifi-
cation formally in LSCs [Harel 2001; Harel and Marelly 2003a]. The present work on LSC compilation and
execution is independent of the method used to create the LSCs, using play-in, direct visual editing, or any
other method.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:34 S. Maoz et al.

of the resulting nondeterminism in a random fashion. Coordination between non-
disjoint scenarios, that is, synchronizing the interactions around common messages,
is done statically and only between overlapping scenarios that the designer has ex-
plicitly specified to be “joined.” In contrast, in our work, coordination is carried out
dynamically, at runtime.

Deubler et al. [2005] suggest modeling crosscutting services with UML sequence
diagrams enhanced by aspect-oriented concepts. This work is related to ours in that it
uses an interaction-centric development approach and concentrates on the behavioral
part of aspects. Code generation, however, is considered in the context of synthesis, as
in Kriiger et al. [2005].

Whittle et al. [2005] translate requirements given in the form of MSCs and IPS (in-
teraction pattern specification) into automata, where inter-dependencies between the
scenarios are handled through the identification of common local states, explicitly spec-
ified by the designer as part of the requirements specifications, and by a unification of
states with common incoming and outgoing transitions. In related work, Araujo et al.
[2004] present a requirements level aspect-oriented modeling approach. Both works
discuss the aspectual nature of crosscutting requirements but use a synthesis algo-
rithm, which results in a state-machine for each of the participating components. In
contrast to these synthesis-based work, in our work, the scenario-based structure of
the specification is not “lost in the translation”; the structure of the code reflects the
structure of the specification. We consider it an advantage.

Uchitel et al. [2004a, 2004b] promote the use of scenario-based languages for re-
quirements elicitation and specification. They discuss the limitations of existing MSC
synthesis approaches and propose to address them by, for instance, detecting implied
scenarios, or by the use of architectural information to synthesize the behavior of com-
ponent types rather than that of instances. It seems that ours and theirs share the
positive view of the intuitive nature and usefulness of scenario-based notations. Their
goal is mainly requirements elicitation, while our goal is execution. Also, our approach
differs in that we use a more expressive formalism and show how to carry over the
scenario-based behavioral specification from requirements to implementation. From a
methodological point of view, they suggest incremental elaboration using implied sce-
narios, where, in the context of LSC, we would add a process that starts from basic
scenarios and incrementally elaborates them with modalities. A complete methodol-
ogy for the use of our compilation scheme in a development process is, however, outside
the scope of this article and will be addressed separately.

8.3 Generated Aspects and Advanced Approaches to AOP

Stolz and Bodden [2006] present a nicely built runtime verification framework for Java
programs, where properties specified in LTL (linear temporal logic) formulas over
Aspectd pointcuts are checked during program execution by an alternating finite
automaton, whose transitions are triggered through generated aspects. Another
runtime verification framework is suggested in Kiviluoma et al. [2005], where gen-
erated aspects are used to simulate a small state machine that monitors behavioral
requirements given as UML sequence diagrams. Since LSCs can be translated into
LTL formulas [Kugler et al. 2005], these two works have some similarities with ours,
specifically in the possibility of using our code generation scheme to monitor LSCs.
Since our main motivation is execution, however, we use the LSC language distinction
between monitoring and execution modes, and adopt the mechanism for simultane-
ous coordination between the automata from the play-out algorithm. Coordination
between the generated aspect automata, as is done in our work, is irrelevant to these
two works.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:35

Groher and Schulze [2003] discuss the generation of AspectdJ code skeletons from a
UML model. Their approach offers a mapping between the structure of the model and
the structure of the resulting program. The skeletons, however, cannot be executed, as
the actual behavior is not modeled.

Many researchers consider the interesting question of using UML to model as-
pects, or suggest to use UML-like notations or new profiles specifically for this purpose
[Aragjo et al. 2002; Barra et al. 2004; Basch and Sanchez 2003; Mahoney and Elrad
2005]. Our present work differs in that it is not intended to answer this question; in-
stead, we use a specific class of aspects in order to execute scenarios. Thus, we do not
aim to create models that cover the expressive power of aspects.

Jacobson and Ng [2004] discuss a methodology for aspect-oriented software devel-
opment with use-cases, and attempt to achieve use-case modularity through aspect
technologies. The use-case abstraction level is not detailed enough to allow formal
semantics nor expressive enough for actual code generation. Indeed, scenarios are
viewed in Jacobson and Ng [2004] as a means to explicate and formalize use-cases.
In contrast, we show how to actually compile scenarios to code via aspects, and in so
doing provide a new possibility for executable use-cases (in addition to the play-out of
Harel and Marelly [2003a]).

Finally, some advanced approaches within the AOP community itself are relevant to
our work. Tracematches [Allan et al. 2005] is an extension of the Aspectd abc compiler
[Avgustinov et al. 2005], which allows the programmer to trigger advice execution
by specifying a regular pattern of events in a computation trace. The ability to use
free variables in the matching pattern and the corresponding unification semantics is
close to our use of parameterized methods and symbolic LSC lifelines. Recent work
[Avgustinov et al. 2007] suggests optimizations for tracematches and addresses space
leak problems in its implementation to increase scalability. It shows the feasibility of
using tracematches for trace monitoring.

Another relevant approach is that of stateful aspects [Vanderperren et al. 2005],
implemented in the JasCo language [Suvée et al. 2003], where pointcuts can declar-
atively specify protocol fragments expressible by finite state machines, and separate
advice can be attached to every transition specified in the pointcut protocol.

Our pointcuts are single points, and we manage the finite state machine explicitly in
the aspect’s body. Thus, one could consider using tracematches or stateful aspects, both
to simplify our generated code, by taking advantage of the more expressive constructs
available in these approaches, and to improve the performance of the final executable
program.

Moreover, association aspects, suggested in Sakurai et al. [2004] as an extension
to Aspectd, allow one to associate an aspect instance with a group of objects and to
specify aspect instances as execution contexts of advice. They thus enable one to use a
natural way to specify stateful behavior related to a particular group of objects. More
recently, Bodden et al. [2008] defined a generalization of association aspects called re-
lational aspects, as an extension of tracematches. These may be useful as an alterna-
tive implementation of scenario aspects, in particular in supporting multiple scenario
instances.

We should note however, that the two approaches, tracematches and stateful as-
pects, are limited to regular protocols. Since nonregular protocols can be specified in
LSC (using variables and unbounded loops), this, to some extent, limits their applica-
bility to our work.

More generally, while there are close similarities between the compilation scheme
presented here and the advanced aspect-based runtime verification work cited above,
there are also fundamental differences, related to the active nature of our work and to
its need for runtime coordination between different scenarios. Specifically, the active

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:36 S. Maoz et al.

characteristics of play-out, whose main goal is execution and not just monitoring,
implies that our generated code cannot be as passive and cannot run with as low an
overhead as possible because it must actually do things, directing and affecting the
behavior of the application. This is in contrast to runtime verification techniques,
where the goal is indeed monitoring with lowest overhead, ideally causing no effect
on the program’s behavior (unless some safety violation occurs). Finally, runtime
verification optimization approaches apply to “local” traces, or to each scenario alone,
while play-out, and hence the compilation scheme presented here requires, in addition,
coordination between the different automata—in our context, coordination between
the generated aspects—which is irrelevant for runtime monitoring and hence is not
addressed by these approaches. As a result, even if these approaches are implemented,
in order to reduce monitoring overhead, and perhaps to produce more elegant code,
we expect coordination between the scenarios, specifically, computing the next method
for execution according to the strategy, to remain a performance challenge.

9. SUMMARY AND FUTURE WORK

One way of viewing our work is as an attempt to carry over a significant idea from the
aspect-oriented world to the scenario-based one, exploiting one of the main achieve-
ments of research on aspects, which is the ability to execute aspect programs by com-
pilation, in order to compile and execute inter-object scenario-based specifications.

Our main contribution is in translating the inter-object scenario-based require-
ments to code that can integrate seamlessly with existing programs and is compiled
and executed in a standard manner. Thus, it constitutes a crucial step towards inte-
grating the scenario-based approach into mainstream software engineering.

Still, some possible drawbacks of our work should be mentioned and addressed. A
number of limitations, with corresponding future work challenges, were mentioned in
Sections 7 and 8. These include the limitations of naive play-out and the challenges
in extending our work to smart play-out or controller synthesis (see Section 7.1), the
complexity of the compilation and the opportunities for its optimization (Sections 7.3
and 7.6), the performance of the translation scheme (see Section 7.4), and runtime
performance of the generated code (see Section 7.5 and the end of Section 8).

In addition to these, we consider the following issues.

Play-out in general, and our current compilation scheme in particular, require cen-
tral coordination at runtime. The need for a centralized coordinator is a limitation
not only from a performance point of view but also from an architectural point of view.
Thus, an important research topic, which our group is pursuing at present, is to find
ways to (partially) distribute the play-out effort, not necessarily between objects but
between concurrently active coordinators.

Adding support for explicit time and real time, as was partly done for the Play-
Engine [Harel and Marelly 2002], is challenging. Specifically, our current compilation
scheme, and play-out in general, does not support multithreaded programs and as-
sumes the system to be infinitely faster than its environment. Handling coordination
in realtime and with multithreaded programs is thus an interesting topic for future
research.

Another issue in our current work is the interpretation of LSC messages as method
calls, rather than assuming the definition and implementation of a full-featured event
model in the applications we aim to model and execute. As a result, our current imple-
mentation suffers from some synchronization problems (partly addressed by a queue
implemented as part of the coordinator aspect). A possible solution is to require the
model and the code to use separate alphabets, that is, to require that events appearing
in the LSC specification are never independently initiated by the original code. This

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:37

requirement can be enforced at runtime, using aspects. We believe that this kind of
layered architecture may be useful and leave the issue for future work.

From a methodological point of view the compilation scheme can be used during
a multistep hybrid development process, even if we prefer not to use it to produce
the final program. At first, many system components are not fully implemented and
thus play-out is responsible for “executing” them. As the implementation progresses,
execution responsibilities gradually move from the LSCs to the core program code; LSC
methods marked for execution change into monitoring mode. Eventually, the system
becomes fully implemented in the core code and the LSCs that were originally used
for executing the partially implemented system remain to serve as optional monitors.
We believe this kind of process may be useful and leave its details and evaluation for
future work.

Finally, once a compiler is available for scenario-based specifications, other tools for
use in the development of scenario-based programs become necessary. For example,
imagine a debugger for programs generated by S2A, which would allow setting break-
points at the level of the model (visually, inside the sequence charts themselves); these
will stop the execution at the correct moment and point the user back both to the gen-
erated aspect code and to the correct diagram (i.e., LSC instance) itself, drawn with its
dynamic cut state. This too is left for future work.

ACKNOWLEDGMENTS

We would like to thank Mark Mahoney and Tzilla Elrad for their early communication with us, where they
pointed us to their work on modeling aspects for reactive systems using LSCs [Mahoney 2005; Mahoney and
Elrad 2005]. This inspired us to address the converse problem of compilation. In addition, we would like to
thank Gera Weiss for early discussions on LSC compilation, and Itai Segall for initiating and helping with
the Memory Game example presented in Maoz and Harel [2006]. Finally, we are grateful to Yishai Feldman
for his useful comments on a draft of Maoz and Harel [2006], to Assaf Marron for comments on a draft of this
article, to Eli Singerman for comments on our work, and to the anonymous reviewers for their constructive
comments, which helped us in improving this article.

REFERENCES

ALLAN, C., AVGUSTINOV, P., CHRISTENSEN, A. S., HENDREN, L. J., KUZINS, S., LHOTAK, O., DE MOOR,
0., SERENI, D., SITTAMPALAM, G., AND TIBBLE, J. 2005. Adding trace matching with free variables
to Aspectd. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA05). R. Johnson and R. P. Gabriel Eds., ACM,
New York, NY, 345-364.

ALUR, R., ETESSAMI, K., AND YANNAKAKIS, M. 2003. Inference of message sequence charts. IEEE Trans.
Softw. Engin. 29, 7, 623-633.

ARAUJO, J., MOREIRA, A., BRITO, I., AND RASHID, A. 2002. Aspect-oriented requirements with UML. In
Proceedings of the Workshop on Aspect-Oriented Modeling with UML. M. Kande, O. Aldawud, G. Booch,
and B. Harrison Eds.

ARAUJO, J., WHITTLE, dJ., AND Kim, D.-K. 2004. Modeling and composing scenario-based requirements
with Aspects. In Proceedings of the 12th IEEE International Conference on Requirements Engineering
(RE’04). IEEE Computer Society, 58—67.

ATIR, Y., HAREL, D., KLEINBORT, A., AND MAOZ, S. 2008. Object composition in scenario-based program-
ming. In Proceedings of the 11th International Conference on Fundamental Approaches to Software
Engineering (FASE’08). J. L. Fiadeiro and P. Inverardi Eds., Lecture Notes in Computer Science, vol.
4961, Springer, 301-316.

AVGUSTINOV, P., CHRISTENSEN, A. S., HENDREN, L., KUZINS, S., LHOTAK, J., LHOTAK, O., DE MOOR,
0., SERENI, D., SITTAMPALAM, G., AND TIBBLE, J. 2005. abc: An extensible Aspectd compiler. In Pro-
ceedings of the 4th International Conference on Aspect-Oriented Software Development (AOSD’05). ACM
Press, 87-98.

AVGUSTINOV, P., TIBBLE, J., AND DE MOOR, O. 2007. Making trace monitors feasible. In Proceedings of the
22nd Annual ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:38 S. Maoz et al.

Applications (OOPSLA07). R. P. Gabriel, D. F. Bacon, C. V. Lopes, and G. L. S. Jr. Eds., ACM, New York,
NY, 589-608.

BARAK, D., HAREL, D., AND MARELLY, R. 2006. InterPlay: Horizontal scale-up and transition to design in
scenario-based programming. IEEE Trans. Softw. Engin. 32, 7, 467—485.

BARRA, E., GENOVA, G., AND LLORENS, J. 2004. An approach to aspect modeling with UML 2.0. In Pro-
ceedings of the 5th International Workshop on Aspect-Oriented Modeling (AOM’04).

BARZILAY, O., FELDMAN, Y., TYSZBEROWICZ, S., AND YEHUDAI, A. 2004. Call and execution semantics in
Aspectd. In Proceedings of the Workshop on Foundations of Aspect Oriented Languages (FOAL04), C.
Clifton, R. Lammel, and G. T. Leavens, Eds., 19-23.

BASCH, M. AND SANCHEZ, A. 2003. Incorporating aspects into the UML. In Proceedings of the 3rd Interna-
tional Workshop on Aspect-Oriented Modeling.

BODDEN, E., SHAIKH, R., AND HENDREN, L. J. 2008. Relational aspects as tracematches. In Proceedings of
the 7th International Conference on Aspect-Oriented Software Development (AOSD’08). T. D’Hondt Ed.,
ACM, 84-95.

BONTEMPS, Y. AND HEYMANS, P. 2002. Turning high-level live sequence charts into automata. In Pro-
ceedings of the 1st International Workshop on Scenarios and State-Machines (SCESM’02) at the 24th
International Conference on Software Engineering (ICSE’02).

BUNKER, A., GOPALAKRISHNAN, G., AND SLIND, K. 2005. Live sequence charts applied to hardware re-
quirements specification and verification. Softw. Tools Techn. Transfer 7, 4, 341-350.

COMBES, P., HAREL, D., AND KUGLER, H. 2008. Modeling and verification of a telecommunication applica-
tion using live sequence charts and the play-engine tool. Softw. Syst. Model. 7, 2, 157-175.

DaMM, W. AND HAREL, D. 2001. LSCs: Breathing life into message sequence charts. Formal Meth. Syst.
Des. 19, 1, 45-80.

DEUBLER, M., MEISINGER, M., RITTMANN, S., AND KRUGER, I. 2005. Modeling crosscutting services with
uml sequence diagrams. In Proceedings of the 8th International Conference on Model Driven Engineering
Languages and Systems (MoDELS’05). L. C. Briand and C. Williams, Eds., Lecture Notes in Computer
Science, vol. 3713, Springer, 522-536.

ELRAD, T., FILMAN, R. E., AND BADER, A. 2001. Aspect—oriented programming: Introduction. Comm. ACM
44,10, 29-32.

GROHER, I. AND SCHULZE, S. 2003. Generating aspect code from UML models. In Proceedings of the
4th Aspect-Orianted Software Development Modeling With UML Workshop. F. Akkawi, O. Aldawud,
G. Booch, S. Clarke, J. Gray, B. Harrison, M. Kande, D. Stein, P. Tarr, and A. Zakaria Eds.

HAREL, D. 2001. From play-in scenarios to code: An achievable dream. IEEE Comput. 34, 1, 53—60.

HAREL, D. 2008. Can programming be liberated, period? IEEE Comput. 41, 1, 28-37.

HAREL, D. AND GERY, E. 1997. Executable object modeling with statecharts. IEEE Comput. 30, 7, 31-42.

HAREL, D. AND KUGLER, H. 2002. Synthesizing state-based object systems from LSC specifications. Int. <.
Found. Comput. Sci. 13,1, 5-51.

HAREL, D. AND MARELLY, R. 2002. Playing with Time: On the Specification and Execution of Time-
Enriched LSCs. In Proceedings of the 10th IEEE/ACM International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS’02). IEEE Computer Society,
193-202.

HAREL, D. AND MARELLY, R. 2003a. Come, Let’s Play: Scenario-Based Programming Using LSCs and the
Play-Engine. Springer.

HAREL, D. AND MARELLY, R. 2003b. Specifying and executing behavioral requirements: the play-in/play-
out approach. Softw. Syst. Model. 2, 2, 82—-107.

HAREL, D. AND NAAMAD, A. 1996. The statemate semantics of statecharts. ACM Trans. Softw. Engin.
Methodol. 5, 4, 293-333.

HAREL, D. AND MAOZ, S. 2008. Assert and negate revisited: Modal semantics for UML sequence diagrams.
Softw. Syst. Model. 7, 2, 237-252.

HAREL, D. AND SEGALL, I. 2007. Planned and traversable play-out: A flexible method for executing
scenario-based programs. In Proceedings of the 13th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’07). O. Grumberg and M. Huth Eds., Lecture
Notes in Computer Science, vol. 4424, Springer, 485-499.

HAREL, D., LACHOVER, H., NAAMAD, A., PNUELI, A., POLITI, M., SHERMAN, R., SHTULL-TRAURING, A.,
AND TRAKHTENBROT, M. 1990. STATEMATE: A working environment for the development of complex
reactive systems. IEEE Trans. Softw. Engin. 16, 403-414.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:39

HAREL, D., KUGLER, H., MARELLY, R., AND PNUELI, A. 2002. Smart play-out of behavioral requirements.
In Proceedings of the 4th International Conference on Formal Methods in Computer-Aided Design
(FMCAD02). M. Aagaard and J. W. O’Leary Eds., Lecture Notes in Computer Science, Springer,
378-398.

HAREL, D., KLEINBORT, A., AND MAOZ, S. 2007. S2A: A compiler for multi-modal UML sequence dia-
grams. In Proceedings of the 10th International Conference on Fundamental Approaches to Software
Engineering (FASE’07). M. B. Dwyer and A. Lopes Eds., Lecture Notes in Computer Science, vol. 4422,
Springer, 121-124.

HAREL, D., KANTOR, A., AND MAOZ, S. 2009a. On the power of play-out for scenario-based programs.
In Concurrency, Compositionality, and Correctness, Festschrift in Honor of Willem-Paul de Roever. D.
Darns, U. Hannemann, and M. Steffen Eds., Lecture Notes in Computer Science, vol. 5930, Springer,
207-220.

HAREL, D., KUGLER, H., MAOZ, S., AND SEGALL, I. 2009b. How hard is smart play-out? On the com-
plexity of verification-driven execution. In Perspectives in Concurrency Theory, A Festschrift for P. S.
Thiagarajan. K. Lodaya, M. Mukultfl, and R. Ramanujam Eds., Universities Press, 208-230.

HAREL, D., KUGLER, H., MAOZ, S., AND SEGALL, I. 2010. Accelerating smart play-out. In Proceedings
of the 36th International Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM’10). Lecture Notes in Computer Science, vol. 5901, Springer, 477—488.

ITU. 1996. International Telecommunication Union Recommendation Z.120: Message sequence charts.
Tech. rep., ITU.

JACOBSON, 1. 1992. Object-Oriented Software Engineering: A Use Case Driven Approach. Addison- Wesley.

JACOBSON, I. AND NG, P.-W. 2004. Aspect-Oriented Software Development with Use Cases. Addison-Wesley.

KICZALES, G., LAMPING, J., MENHDHEKAR, A., MAEDA, C., LOPES, C., LOINGTIER, J.-M., AND IRWIN, J.
1997. Aspect-oriented programming. In Proceedings of the 11th European Conference on Object-Oriented
Programming (ECOOP’97). M. Aksit and S. Matsuoka Eds., Lecture Notes in Computer Science, vol.
1241, Springer, 220-242.

KiczALES, G., HILSDALE, E., HUGUNIN, J., KERSTEN, M., PALM, J., AND GRISWOLD, W. G. 2001. An
overview of Aspectd. In Proceedings of the 15th European Conference on Object-Oriented Programming
(ECOOP0l). J. L. Knudsen Ed., Lecture Notes in Computer Science, vol. 2072, Springer, 327-354.

KIVILUOMA, K., KOSKINEN, J., AND MIKKONEN, T. 2005. Run-time monitoring of behavioral profiles with
aspects. In Proceedings of the 3rd Nordic Workshop on UML and Software Modeling. 62—76.

KLOSE, J. AND WITTKE, H. 2001. An automata based interpretation of live sequence charts. In Proceedings
of the 7th International Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’01). T. Margaria and W. Yi Eds., Lecture Notes in Computer Science, vol. 2031, Springer,
512-527.

KLOSE, J., TOBEN, T., WESTPHAL, B., AND WITTKE, H. 2006. Check it out: On the efficient formal
verification of live sequence charts. In Proceedings of the 18th International Conference on Computers
Aided Verification (CAV°06). T. Ball and R. B. Jones Eds., Lecture Notes in Computer Science, vol. 4144.,
Springer, 219-233.

KRUGER, I., GROSU, R., SCHOLZ, P., AND BROY, M. 1999. From MSCs to statecharts. In Proceedings of the
International Workshop on Distributed and Parallel Embedded Systems (DIPES’98). F. J. Rammig Ed.,
Kluwer, 61-72.

KRUGER, 1., MATHEW, R., AND MEISINGER, M. 2005. From scenarios to aspects: Exploring product lines.
In Proceedings of the 4th International Workshop on Scenarios and State-Machines (SCESM’05) at the
27th International Conference on Software Engineering (ICSE’05). ACM Press, 1-6.

KRUGER, I., MATHEW, R., AND MEISINGER, M. 2006. Efficient exploration of service-oriented architectures
using aspects. In Proceedings of the 28th International Conference on Software Engineering (ICSE’06).
ACM Press, 62-71.

KUGLER, H. AND SEGALL, I. 2009. Compositional synthesis of reactive systems from live sequence chart
specifications. In Proceedings of the 15th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’09). S. Kowalewski and A. Philippou Eds., Lecture Notes
in Computer Science, vol. 5505, Springer, 77-91.

KUGLER, H., HAREL, D., PNUELI, A., LU, Y., AND BONTEMPS, Y. 2005. Temporal logic for scenario-based
specifications. In Proceedings of the 11th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’05). N. Halbwachs and L. D. Zuck Eds., Lecture Notes in
Computer Science, vol. 3440, Springer, 445-460.

KUGLER, H., PLOCK, C., AND PNUELI, A. 2009. Controller synthesis from LSC requirements. In Pro-
ceedings of the 12th International Conference on Fundamental Approaches to Software Engineering
(FASE’09). M. Chechik and M. Wirsing Eds., Lecture Notes in Computer Science, Springer, 79-93.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

18:40 S. Maoz et al.

KUPFERMAN, O. AND VARDI, M. Y. 2001. Weak alternating automata are not that weak. ACM Trans.
Comput. Log. 2, 3, 408-429.

LETTRARI, M. AND KLOSE, J. 2001. Scenario-based monitoring and testing of real-time UML models.
In Proceedings of the 4th International Conference on the Unified Modeling Language, Modeling
Languages, Concepts, and Tools. M. Gogolla and C. Kobryn Eds., Lecture Notes in Computer Science,
vol. 2185, Springer, 317-328.

Lo, D. AND MAOZ, S. 2008a. Mining scenario-based triggers and effects. In Proceedings of the 23rd
IEEE/ACM International Conference on Automated Software Engineering (ASE’08). IEEE, 109-118.

Lo, D. AND MAOZ, S. 2008b. Specification mining of symbolic scenario-based models. In Proceedings of the
8th ACM SIGPLAN SIGSOFT International Workshop on Program Analysis for Software Tools and
Engineering (PASTE’08). S. Krishnamurthi and M. Young Eds., ACM, 29-35.

Lo, D.,MAO0z, S., AND KHOO, S.-C. 2007. Mining modal scenario-based specifications from execution traces
of reactive systems. In Proceedings of the 22nd IEEE/ACM International Conference on Automated
Software Engineering (ASE’01). R. E. K. Stirewalt, A. Egyed, and B. Fischer Eds., ACM, 465—468.

MAHONEY, M. 2005. In Proceedings of MoDELS International Workshops, Doctoral Symposium, Educators
Symposium (Revised Selected Papers), J.-M. Bruel Ed., Lecture Notes in Computer Science, vol. 3844,
Springer, 345-346.

MAHONEY, M. AND ELRAD, T. 2005. Weaving crosscutting concerns into live sequence charts using the
play-engine. In Proceedings of the 7th International Workshop on Aspect-Oriented Modeling.

MAo0z, S. 2009a. Model-based traces. In Proceedings of the 3rd International Workshop on Models at
Runtime, MoDELS International Workshops, Doctoral Symposium, Educators Symposium. M.R.V.
Chaudron Ed. Lecture Notes in Computer Science, vol. 5421, Springer, 109-119.

MAOzZ, S. 2009b. Polymorphic scenario-based specification models: Semantics and applications. In Pro-
ceedings of the 12th International Conference on Model Driven Engineering Languages and Systems
(MoDELS’09). A. Schurr and B. Selic Eds., Lecture Notes in Computer Science, vol. 5795, Springer,
499-513.

MAOZ, S. AND HAREL, D. 2006. From multi-modal scenarios to code: Compiling LSCs into Aspectd. In Pro-
ceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE’06). M. Young and P. T. Devanbu Eds., ACM, 219-229.

MAoOz, S., KLEINBORT, A., AND HAREL, D. 2007. Towards trace visualization and exploration for reactive
systems. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC’07). IEEE Computer Society, 153-156.

MAOZ, S., METSA, J., AND KATARA, M. 2009. Model-based testing using LSCs and S2A. In Proceedings of
the 12th International Conference on Model Driven Engineering Languages and Systems (MoDELS’09).
A. Schlirr and B. Selic Eds., Lecture Notes in Computer Science, vol. 5795, Springer, 301-306.

MARELLY, R., HAREL, D., AND KUGLER, H. 2002. Multiple instances and symbolic variables in executable
sequence charts. In Proceedings of the 17th ACM Conference on Object-Oriented Programming, Systems,
Language and Applications (OOPSLA02). ACM, 83-100.

PouPKkoO, O. 2008. Specifying and executing web service choreography using live sequence charts. M.Sc.
thesis, Weizmann Institute of Science.

SAKURAI, K., MASUHARA, H., UBAYASHI, N., MATSUURA, S., AND KOMIYA, S. 2004. Association as-
pects. In Proceedings of the 3rd International Conference on Aspect-Oriented Software Development
(AOSD’04). G. C. Murphy and K. J. Lieberherr Eds., ACM, 16-25.

STOLZ, V. AND BODDEN, E. 2006. Temporal assertions using Aspectd. Electr. Notes Theor. Comput. Sci.
144, 4, 109-124.

SUVEE, D., VANDERPERREN, W., AND JONCKERS, V. 2003. JAsCo: An aspect-oriented approach tailored
for component based software development. In Proceedings of the 2nd International Conference on
Aspect-Oriented Software Development (AOSD’03). ACM, 21-29.

UCHITEL, S., CHATLEY, R., KRAMER, J., AND MAGEE, J. 2004a. System architecture: The context for
scenario-based model synthesis. In Proceedings of the 12th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE’04). ACM Press, New York, NY, 33-42.

UCHITEL, S., KRAMER, J., AND MAGEE, J. 2004b. Incremental elaboration of scenario-based specifications
and behavior models using implied scenarios. ACM Trans. Softw. Engin. Method. 13, 1, 37-85.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

A Compiler for Multimodal Scenarios: Transforming LSCs into AspectJ 18:41

UML. 2005. Unified modeling language superstructure specification, v2.0. OMG specification, OMG.

VANDERPERREN, W., SUVEE, D., CIBRAN, M. A., AND FRAINE, B. D. 2005. Stateful aspects in JAsCo. In

Software Composition. T. Gschwind, U. ABmann, and O. Nierstrasz Eds., Lecture Notes in Computer
Science, vol. 3628, Springer, 167-181.

WHITTLE, J., KWAN, R., AND SABOO, J. 2005. From scenarios to code: An air traffic control case study.
Softw. Syst. Model. 4, 1, 71-93.

Received May 2008; revised June 2009, September 2009; accepted November 2009

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 4, Article 18, Publication date: September 2011.

